Efficient Computation of Fitness Function for Evolutionary Clustering

dc.contributor.authorMuravyov, Sergey
dc.contributor.authorAntipov, Denis
dc.contributor.authorBuzdalova, Arina
dc.contributor.authorFilchenkov, Andrey
dc.coverage.issue1cs
dc.coverage.volume25cs
dc.date.accessioned2020-05-05T07:21:10Z
dc.date.available2020-05-05T07:21:10Z
dc.date.issued2019-06-24cs
dc.description.abstractEvolutionary algorithms (EAs) are random search heuristics which can solve various optimization problems. There are plenty of papers describing different approaches developed to apply evolutionary algorithms to the clustering problem, although none of them addressed the problem of fitness function computation. In clustering, many clustering validity indices exist that are designed to evaluate quality of resulting points partition. It is hard to use them as a fitness function due to their computational complexity. In this paper, we propose an efficient method for iterative computation of clustering validity indices which makes application of the EAs to this problem much more appropriate than it was before.en
dc.formattextcs
dc.format.extent87-94cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2018 vol. 25, č. 1, s. 87-94. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2019.1.087en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/186986
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/83cs
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en
dc.subjectClusteringen
dc.subjectevolutionary clusteringen
dc.subjectclustering validity indicesen
dc.subjectfitness functionen
dc.titleEfficient Computation of Fitness Function for Evolutionary Clusteringen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019-1-087.pdf
Size:
917.83 KB
Format:
Adobe Portable Document Format
Description:
Collections