Efficient Computation of Fitness Function for Evolutionary Clustering
dc.contributor.author | Muravyov, Sergey | |
dc.contributor.author | Antipov, Denis | |
dc.contributor.author | Buzdalova, Arina | |
dc.contributor.author | Filchenkov, Andrey | |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 25 | cs |
dc.date.accessioned | 2020-05-05T07:21:10Z | |
dc.date.available | 2020-05-05T07:21:10Z | |
dc.date.issued | 2019-06-24 | cs |
dc.description.abstract | Evolutionary algorithms (EAs) are random search heuristics which can solve various optimization problems. There are plenty of papers describing different approaches developed to apply evolutionary algorithms to the clustering problem, although none of them addressed the problem of fitness function computation. In clustering, many clustering validity indices exist that are designed to evaluate quality of resulting points partition. It is hard to use them as a fitness function due to their computational complexity. In this paper, we propose an efficient method for iterative computation of clustering validity indices which makes application of the EAs to this problem much more appropriate than it was before. | en |
dc.format | text | cs |
dc.format.extent | 87-94 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Mendel. 2018 vol. 25, č. 1, s. 87-94. ISSN 1803-3814 | cs |
dc.identifier.doi | 10.13164/mendel.2019.1.087 | en |
dc.identifier.issn | 2571-3701 | |
dc.identifier.issn | 1803-3814 | |
dc.identifier.uri | http://hdl.handle.net/11012/186986 | |
dc.language.iso | en | cs |
dc.publisher | Institute of Automation and Computer Science, Brno University of Technology | cs |
dc.relation.ispartof | Mendel | cs |
dc.relation.uri | https://mendel-journal.org/index.php/mendel/article/view/83 | cs |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license | en |
dc.rights.access | openAccess | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0 | en |
dc.subject | Clustering | en |
dc.subject | evolutionary clustering | en |
dc.subject | clustering validity indices | en |
dc.subject | fitness function | en |
dc.title | Efficient Computation of Fitness Function for Evolutionary Clustering | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2019-1-087.pdf
- Size:
- 917.83 KB
- Format:
- Adobe Portable Document Format
- Description: