Semi-Supervised Approach To Train Captcha Letter Position Detetor

but.event.date27.04.2021cs
but.event.titleSTUDENT EEICT 2021cs
dc.contributor.authorBostik, Ondrej
dc.date.accessioned2021-07-21T07:07:00Z
dc.date.available2021-07-21T07:07:00Z
dc.date.issued2021cs
dc.description.abstractCommon Optical Character Recognition (OCR) methods benefit from the fact, that the text is distributedin images in a predictable pattern. This is not the situation with CAPTCHA systems. UtilizingOCR algorithms to overcome common web anti-abuse CAPTCHA systems is therefore a challengingtask. To train a system to overcome any CAPTCHA scheme, an attacker needs a huge dataset ofannotated images. And for some methods, the attacker needs not only the right answers but also anexact position of the character in the CAPTCHA image.Annotate the positions of the object in an image is a time-consuming task. In this paper, we proposea system, which can help to annotate the position of CAPTCHA character with minimal humaninteraction. After annotating a small sample of targeted CAPTCHA images, a YOLO-based regiondetection deep network is used to search for the characters’ locations.en
dc.formattextcs
dc.format.extent436-440cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 27st Conference STUDENT EEICT 2021: General papers. s. 436-440. ISBN 978-80-214-5942-7cs
dc.identifier.isbn978-80-214-5942-7
dc.identifier.urihttp://hdl.handle.net/11012/200796
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 27st Conference STUDENT EEICT 2021: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectOCRen
dc.subjectCAPTCHAen
dc.subjectDeep learningen
dc.subjectYOLO v2en
dc.subjectsemi-supervised learningen
dc.subjectMATLABen
dc.titleSemi-Supervised Approach To Train Captcha Letter Position Detetoren
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
436_eeict-2021_1.pdf
Size:
215.66 KB
Format:
Adobe Portable Document Format
Description: