Beat Tracking: Is 441 kHz Really Needed?

Loading...
Thumbnail Image

Date

Authors

Ištvánek, Matěj
Miklánek, Štěpán

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Altmetrics

Abstract

Beat tracking is essential in music informationretrieval, with applications ranging from music analysis and automaticplaylist generation to beat-synchronized effects. In recentyears, deep learning methods, usually inspired by well-knownarchitectures, outperformed other beat tracking algorithms. Thecurrent state-of-the-art offline beat tracking systems utilize temporalconvolutional and recurrent networks. Most systems use aninput sampling rate of 44.1 kHz. In this paper, we retrain multipleversions of state-of-the-art temporal convolutional networks withdifferent input sampling rates while keeping the time resolutionby changing the frame size parameter. Furthermore, we evaluateall models using standard metrics. As the main contribution,we show that decreasing the input audio recording samplingfrequency up to 5 kHz preserves most of the accuracy, and insome cases, even slightly outperforms the standard approach.

Description

Citation

Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 227-231. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO