Beat Tracking: Is 441 kHz Really Needed?
Loading...
Date
2023
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Beat tracking is essential in music informationretrieval, with applications ranging from music analysis and automaticplaylist generation to beat-synchronized effects. In recentyears, deep learning methods, usually inspired by well-knownarchitectures, outperformed other beat tracking algorithms. Thecurrent state-of-the-art offline beat tracking systems utilize temporalconvolutional and recurrent networks. Most systems use aninput sampling rate of 44.1 kHz. In this paper, we retrain multipleversions of state-of-the-art temporal convolutional networks withdifferent input sampling rates while keeping the time resolutionby changing the frame size parameter. Furthermore, we evaluateall models using standard metrics. As the main contribution,we show that decreasing the input audio recording samplingfrequency up to 5 kHz preserves most of the accuracy, and insome cases, even slightly outperforms the standard approach.
Description
Citation
Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 227-231. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií