Description of short fatigue crack propagation under low cycle fatigue regime

Loading...
Thumbnail Image

Authors

Hutař, Pavel
Poduška, Jan
Chlupová, Alice
Šmíd, Miroslav
Kruml, Tomáš
Náhlík, Luboš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

Measurement of the short fatigue crack propagation can come across a lot of difficulties from the experimental point of view and interpretation of the results is also sometimes controversial. For simplicity, usual description of the short cracks is based on linear elastic fracture mechanics (using the concept of stress intensity factor). In this case, significant differences between short cracks and long cracks are usually presented. Most of the discrepancies are simply given by non-validity of the linear elastic fracture mechanics approach. In our case of physically short fatigue cracks the level of applied stress is close to cyclic yield stress of the material and, due to large amount of plasticity, conditions of linear elastic fracture mechanics are not satisfied. As a consequence, non-linear elastic plastic fracture mechanics is used for description of the short crack behavior in this article. Concept based on plastic part of J-integral is proposed for the description of the short crack behavior and data obtained for different strain amplitudes are compared. This concept is validated on experimental data obtained on steel 316L.
Measurement of the short fatigue crack propagation can come across a lot of difficulties from the experimental point of view and interpretation of the results is also sometimes controversial. For simplicity, usual description of the short cracks is based on linear elastic fracture mechanics (using the concept of stress intensity factor). In this case, significant differences between short cracks and long cracks are usually presented. Most of the discrepancies are simply given by non-validity of the linear elastic fracture mechanics approach. In our case of physically short fatigue cracks the level of applied stress is close to cyclic yield stress of the material and, due to large amount of plasticity, conditions of linear elastic fracture mechanics are not satisfied. As a consequence, non-linear elastic plastic fracture mechanics is used for description of the short crack behavior in this article. Concept based on plastic part of J-integral is proposed for the description of the short crack behavior and data obtained for different strain amplitudes are compared. This concept is validated on experimental data obtained on steel 316L.

Description

Citation

Procedia Structural Integrity. 2016, vol. 2, issue 1, p. 3010-3017.
http://www.sciencedirect.com/science/article/pii/S245232161630395X

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO