Spray cooling heat transfer above leidenfrost temperature

dc.contributor.authorChabičovský, Martincs
dc.contributor.authorKotrbáček, Petrcs
dc.contributor.authorBellerová, Hanacs
dc.contributor.authorKomínek, Jancs
dc.contributor.authorRaudenský, Miroslavcs
dc.coverage.issue9cs
dc.coverage.volume10cs
dc.date.issued2020-09-01cs
dc.description.abstractThis study considers spray cooling starting at surface temperatures of about 1200 °C and finishing at the Leidenfrost temperature. Cooling is in the film boiling regime. The paper uses experimental techniques for the study of which spray parameters are necessary for good prediction of spray cooling intensity. The research is based on experiments with water and air-mist nozzles. The following spray parameters were measured together with a heat transfer coefficient: water flowrate, water impingement density, impact pressure, droplet size and velocity. Derived parameters as droplet kinetic energy, droplet momentum and droplet Reynolds number are used in the tested correlations as well. Ten combinations of spray parameters used for correlation functions for the heat transfer coefficient (HTC) are studied and discussed. Correlation functions for prediction of HTC are presented and it is shown which spray parameters are necessary for reliable computation of HTC. The best results were obtained when the parameters impact pressure and water impingement density were used together. It was proven that the correlations based only on water impingement density, which are the most frequent in literature, can not provide reliable results.en
dc.formattextcs
dc.format.extent1-16cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMetals. 2020, vol. 10, issue 9, p. 1-16.en
dc.identifier.doi10.3390/met10091270cs
dc.identifier.issn2075-4701cs
dc.identifier.orcid0000-0002-6725-6188cs
dc.identifier.orcid0000-0003-2682-5070cs
dc.identifier.orcid0000-0003-1401-4123cs
dc.identifier.orcid0000-0003-0041-1400cs
dc.identifier.orcid0000-0001-7116-9274cs
dc.identifier.other165493cs
dc.identifier.researcheridJ-9795-2014cs
dc.identifier.researcheridG-9656-2015cs
dc.identifier.researcheridM-9706-2019cs
dc.identifier.researcheridG-5990-2017cs
dc.identifier.researcheridG-9625-2015cs
dc.identifier.scopus57194432373cs
dc.identifier.scopus7801591110cs
dc.identifier.scopus35727467100cs
dc.identifier.scopus56524210000cs
dc.identifier.scopus57216709671cs
dc.identifier.urihttp://hdl.handle.net/11012/195637
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMetalscs
dc.relation.urihttps://www.mdpi.com/2075-4701/10/9/1270cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2075-4701/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectContinuous castingen
dc.subjectCorrelation functionen
dc.subjectFilm boilingen
dc.subjectHeat transfer coefficienten
dc.subjectHeat treatment Leidenfrost temperatureen
dc.subjectMist nozzleen
dc.subjectSpray coolingen
dc.subjectWater nozzleen
dc.titleSpray cooling heat transfer above leidenfrost temperatureen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-165493en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:47:22en
sync.item.modts2025.01.17 16:48:29en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
metals1001270v2.pdf
Size:
6.63 MB
Format:
Adobe Portable Document Format
Description:
metals1001270v2.pdf