A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling

Loading...
Thumbnail Image

Authors

Karimi-Sibaki, Ebrahim
Kharicha, Abdellah
Wu, Menghuai
Ludwig, Andreas
Boháček, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Altmetrics

Abstract

Main modeling challenges for vacuum arc remelting (VAR) are briefly highlighted concerning various involving phenomena during the process such as formation and movement of cathode spots on the surface of electrode, the vacuum plasma, side-arcing, the thermal radiation in the vacuum region, magnetohydrodynamics (MHD) in the molten pool, melting of the electrode, and solidification of the ingot. A numerical model is proposed to investigate the influence of several decisive parameters such as arc mode (diffusive or constricted), amount of side-arcing, and gas cooling of shrinkage gap at mold-ingot interface on the solidification behavior of a Titanium-based (Ti-6Al-4V) VAR ingot. The electromagnetic and thermal fields are solved in the entire system including the electrode, vacuum plasma, ingot, and mold. The flow field in the molten pool and the solidification pool profile are computed. The depth of molten pool decreases as the radius of arc increases. With the decreasing amount of side-arcing, the depth of the molten pool increases. Furthermore, gas cooling fairly improves the internal quality of ingot (shallow pool depth) without affecting hydrodynamics in the molten pool. Modeling results are validated against an experiment.
Main modeling challenges for vacuum arc remelting (VAR) are briefly highlighted concerning various involving phenomena during the process such as formation and movement of cathode spots on the surface of electrode, the vacuum plasma, side-arcing, the thermal radiation in the vacuum region, magnetohydrodynamics (MHD) in the molten pool, melting of the electrode, and solidification of the ingot. A numerical model is proposed to investigate the influence of several decisive parameters such as arc mode (diffusive or constricted), amount of side-arcing, and gas cooling of shrinkage gap at mold-ingot interface on the solidification behavior of a Titanium-based (Ti-6Al-4V) VAR ingot. The electromagnetic and thermal fields are solved in the entire system including the electrode, vacuum plasma, ingot, and mold. The flow field in the molten pool and the solidification pool profile are computed. The depth of molten pool decreases as the radius of arc increases. With the decreasing amount of side-arcing, the depth of the molten pool increases. Furthermore, gas cooling fairly improves the internal quality of ingot (shallow pool depth) without affecting hydrodynamics in the molten pool. Modeling results are validated against an experiment.

Description

Citation

METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE. 2020, vol. 51, issue 1, p. 222-235.
https://link.springer.com/article/10.1007/s11663-019-01719-5

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO