Production of lipids and carotenoids in Coccomyxa onubensis under acidic conditions in raceway ponds
Loading...
Date
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
Coccomyxa onubensis (C. onubensis) belongs to the extensive genus Coccomyxa, which inhabits ecosystems with high metal concentrations, generally at acidic pH. In this study, the feasibility of cultivating the acidotolerant microalga C. onubensis in raceway open ponds was investigated. Specific attention was paid to the production of lipids and carotenoids. C. onubensis was cultivated outdoors, under non-sterile conditions, in three separate ponds that differed in their nutrient concentrations and aeration rates. The results show that C. onubensis was able to grow steadily and free of photosynthetic contaminants throughout the cultivation period. The low pH of the media prevented non-extremophilic competitors from proliferating, thus allowing for the selective growth of C. onubensis. The highest productivity values for the biomass and targeted compounds were obtained in the culture supplemented with twice the amount of nutrients and aeration rate. These significant maximum productivity values were 0.223 mg of carotenoidsg-1d-1, 0.139 mg of chlorophyllsg-1d-1, and 0.031 g of biomassL-1d-1. A significant maximum lipid production of 9.87% in the dry biomass was reached, of which 49.92% corresponded to polyunsaturated fatty acids (PUFAs). Overall, this manuscript demonstrates that the production of acidic-habitat microalgae in open systems can be advantageous for microalgae-based production of carotenoids and PUFAs, while avoiding contamination by photosynthetic competitors.
Coccomyxa onubensis (C. onubensis) belongs to the extensive genus Coccomyxa, which inhabits ecosystems with high metal concentrations, generally at acidic pH. In this study, the feasibility of cultivating the acidotolerant microalga C. onubensis in raceway open ponds was investigated. Specific attention was paid to the production of lipids and carotenoids. C. onubensis was cultivated outdoors, under non-sterile conditions, in three separate ponds that differed in their nutrient concentrations and aeration rates. The results show that C. onubensis was able to grow steadily and free of photosynthetic contaminants throughout the cultivation period. The low pH of the media prevented non-extremophilic competitors from proliferating, thus allowing for the selective growth of C. onubensis. The highest productivity values for the biomass and targeted compounds were obtained in the culture supplemented with twice the amount of nutrients and aeration rate. These significant maximum productivity values were 0.223 mg of carotenoidsg-1d-1, 0.139 mg of chlorophyllsg-1d-1, and 0.031 g of biomassL-1d-1. A significant maximum lipid production of 9.87% in the dry biomass was reached, of which 49.92% corresponded to polyunsaturated fatty acids (PUFAs). Overall, this manuscript demonstrates that the production of acidic-habitat microalgae in open systems can be advantageous for microalgae-based production of carotenoids and PUFAs, while avoiding contamination by photosynthetic competitors.
Coccomyxa onubensis (C. onubensis) belongs to the extensive genus Coccomyxa, which inhabits ecosystems with high metal concentrations, generally at acidic pH. In this study, the feasibility of cultivating the acidotolerant microalga C. onubensis in raceway open ponds was investigated. Specific attention was paid to the production of lipids and carotenoids. C. onubensis was cultivated outdoors, under non-sterile conditions, in three separate ponds that differed in their nutrient concentrations and aeration rates. The results show that C. onubensis was able to grow steadily and free of photosynthetic contaminants throughout the cultivation period. The low pH of the media prevented non-extremophilic competitors from proliferating, thus allowing for the selective growth of C. onubensis. The highest productivity values for the biomass and targeted compounds were obtained in the culture supplemented with twice the amount of nutrients and aeration rate. These significant maximum productivity values were 0.223 mg of carotenoidsg-1d-1, 0.139 mg of chlorophyllsg-1d-1, and 0.031 g of biomassL-1d-1. A significant maximum lipid production of 9.87% in the dry biomass was reached, of which 49.92% corresponded to polyunsaturated fatty acids (PUFAs). Overall, this manuscript demonstrates that the production of acidic-habitat microalgae in open systems can be advantageous for microalgae-based production of carotenoids and PUFAs, while avoiding contamination by photosynthetic competitors.
Description
Keywords
Citation
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-0982-5696 