On Testing Reduction of Left-Censored Weibull Distribution to Exponential Submodel

dc.contributor.authorFusek, Michal
dc.coverage.issue1cs
dc.coverage.volume23cs
dc.date.accessioned2019-06-26T10:18:10Z
dc.date.available2019-06-26T10:18:10Z
dc.date.issued2017-06-01cs
dc.description.abstractWhen analyzing environmental or chemical data, it is often necessary to deal with left-censoredobservations. Since the distribution of the observed variable is often asymmetric, the exponential or the Weibulldistribution can be used. This paper summarizes statistical model of a multiply left-censored Weibull distribution,and estimation of its parameters and their variances using the expected Fisher information matrix. Since inmany situations the Weibull distribution is unnecessarily complicated for data modelling, statistical tests (theLagrange multiplier test, the likelihood ratio test, the Wald test) for assessing suitability of replacement ofthe censored Weibull distribution with the exponential submodel are introduced and their power functions areanalyzed using simulations.en
dc.formattextcs
dc.format.extent179-184cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2017 vol. 23, č. 1, s. 179-184. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2017.1.179en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/179215
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/70cs
dc.rights.accessopenAccessen
dc.subjectAsymptotic testsen
dc.subjectmultiply left-censored dataen
dc.subjectFisher information matrixen
dc.subjectmaximum likelihooden
dc.titleOn Testing Reduction of Left-Censored Weibull Distribution to Exponential Submodelen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
70-Article Text-129-1-10-20190219.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Collections