Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods

Loading...
Thumbnail Image

Authors

Kejík, Lukáš
Horák, Michal
Šikola, Tomáš
Křápek, Vlastimil

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

The Optical Society
Altmetrics

Abstract

The quality of lithographically prepared structures is intimately related to the properties of the metal film from which they are fabricated. Here we compare two kinds of thin gold films on a silicon nitride membrane: a conventional polycrystalline thin film deposited by magnetron sputtering and monocrystalline gold microplates that were chemically synthesised directly on the membrane’s surface for the first time. Both pristine metals were used to fabricate plasmonic nanorods using focused ion beam lithography. The structural and optical properties of the nanorods were characterized by analytical transmission electron microscopy including electron energy loss spectroscopy. The dimensions of the nanorods in both substrates reproduced well the designed size of 240 × 80 nm 2 with the deviations up to 20nm in both length and width. The shape reproducibility was considerably improved among monocrystalline nanorods fabricated from the same microplate. Interestingly, monocrystalline nanorods featured inclined boundaries while the boundaries of the polycrystalline nanorods were upright. Q factors and peak loss probabilities of the modes in both structures are within the experimental uncertainty identical. We demonstrate that the optical response of the plasmonic nanorods is not deteriorated when the polycrystalline metal is used instead of the monocrystalline metal.
The quality of lithographically prepared structures is intimately related to the properties of the metal film from which they are fabricated. Here we compare two kinds of thin gold films on a silicon nitride membrane: a conventional polycrystalline thin film deposited by magnetron sputtering and monocrystalline gold microplates that were chemically synthesised directly on the membrane’s surface for the first time. Both pristine metals were used to fabricate plasmonic nanorods using focused ion beam lithography. The structural and optical properties of the nanorods were characterized by analytical transmission electron microscopy including electron energy loss spectroscopy. The dimensions of the nanorods in both substrates reproduced well the designed size of 240 × 80 nm 2 with the deviations up to 20nm in both length and width. The shape reproducibility was considerably improved among monocrystalline nanorods fabricated from the same microplate. Interestingly, monocrystalline nanorods featured inclined boundaries while the boundaries of the polycrystalline nanorods were upright. Q factors and peak loss probabilities of the modes in both structures are within the experimental uncertainty identical. We demonstrate that the optical response of the plasmonic nanorods is not deteriorated when the polycrystalline metal is used instead of the monocrystalline metal.

Description

Citation

OPTICS EXPRESS. 2020, vol. 28, issue 23, p. 34960-34972.
https://doi.org/10.1364/OE.409428

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO