How the Addition of Chitosan Affects the Transport and Rheological Properties of Agarose Hydrogels

Loading...
Thumbnail Image

Authors

Klučáková, Martina

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Agarose hydrogels enriched by chitosan were studied from a point of view diffusion and the immobilization of metal ions. Copper was used as a model metal with a high affinity to chitosan. The influence of interactions between copper and chitosan on transport properties was investigated. Effective diffusion coefficients were determined and compared with values obtained from pure agarose hydrogel. Their values increased with the amount of chitosan added to agarose hydrogel and the lowest addition caused the decrease in diffusivity in comparison with hydrogel without chitosan. Liesegang patterns were observed in the hydrogels with higher contents of chitosan. The patterns were more distinct if the chitosan content increased. The formation of Liesegang patterns caused a local decrease in the concentration of copper ions and concentration profiles were affected by this phenomenon. Thus, the values of effective diffusion coefficient covered the influences of pore structure of hydrogels and the interactions between chitosan and metal ions, including precipitation on observed Liesegang rings. From the point of view of rheology, the addition of chitosan resulted in changes in storage and loss moduli, which can show on a “more liquid” character of enriched hydrogels. It can contribute to the increase in the effective diffusion coefficients for hydrogels with higher content of chitosan.
Agarose hydrogels enriched by chitosan were studied from a point of view diffusion and the immobilization of metal ions. Copper was used as a model metal with a high affinity to chitosan. The influence of interactions between copper and chitosan on transport properties was investigated. Effective diffusion coefficients were determined and compared with values obtained from pure agarose hydrogel. Their values increased with the amount of chitosan added to agarose hydrogel and the lowest addition caused the decrease in diffusivity in comparison with hydrogel without chitosan. Liesegang patterns were observed in the hydrogels with higher contents of chitosan. The patterns were more distinct if the chitosan content increased. The formation of Liesegang patterns caused a local decrease in the concentration of copper ions and concentration profiles were affected by this phenomenon. Thus, the values of effective diffusion coefficient covered the influences of pore structure of hydrogels and the interactions between chitosan and metal ions, including precipitation on observed Liesegang rings. From the point of view of rheology, the addition of chitosan resulted in changes in storage and loss moduli, which can show on a “more liquid” character of enriched hydrogels. It can contribute to the increase in the effective diffusion coefficients for hydrogels with higher content of chitosan.

Description

Citation

Gels. 2023, vol. 9, issue 2, p. 1-16.
https://www.mdpi.com/2310-2861/9/2/99

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO