Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis
but.event.date | 23.04.2024 | cs |
but.event.title | STUDENT EEICT 2024 | cs |
dc.contributor.author | Lepík, Jakub | |
dc.contributor.author | Čičatka, Michal | |
dc.date.accessioned | 2024-07-09T07:38:37Z | |
dc.date.available | 2024-07-09T07:38:37Z | |
dc.date.issued | 2024 | cs |
dc.description.abstract | Rapid and reliable antibiotic susceptibility testing (AST) methods are imperative in response to the escalating challenges of antimicrobial resistance. This study focuses on enhancing disk diffusion testing, a cornerstone of AST, by integrating machine learning and automation. Leveraging state-of-the-art object detection models, including EfficientDet and Mask R-CNN and image-processing approaches, our methodology addresses the need for standardized evaluation processes across diverse laboratory equipment while enabling the integration of mobile devices into the workflow, democratizing AST, and enhancing its accessibility. We utilize a comprehensive disk diffusion dataset for object detection models captured by devices like mobile phones and professional solutions. Additionally, our experiments lay the groundwork for a web application adopting a device-agnostic approach, promising improved accessibility and efficiency in AST analysis. | en |
dc.format | text | cs |
dc.format.extent | 20-23 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers. s. 20-23. ISBN 978-80-214-6231-1 | cs |
dc.identifier.isbn | 978-80-214-6231-1 | |
dc.identifier.issn | 2788-1334 | |
dc.identifier.uri | https://hdl.handle.net/11012/249223 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers | en |
dc.relation.uri | https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | antibiotic sensitivity testing | en |
dc.subject | disk diffusion test | en |
dc.subject | machine learning | en |
dc.subject | image processing | en |
dc.title | Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 20-eeict-2024.pdf
- Size:
- 3.69 MB
- Format:
- Adobe Portable Document Format
- Description: