Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis

but.event.date23.04.2024cs
but.event.titleSTUDENT EEICT 2024cs
dc.contributor.authorLepík, Jakub
dc.contributor.authorČičatka, Michal
dc.date.accessioned2024-07-09T07:38:37Z
dc.date.available2024-07-09T07:38:37Z
dc.date.issued2024cs
dc.description.abstractRapid and reliable antibiotic susceptibility testing (AST) methods are imperative in response to the escalating challenges of antimicrobial resistance. This study focuses on enhancing disk diffusion testing, a cornerstone of AST, by integrating machine learning and automation. Leveraging state-of-the-art object detection models, including EfficientDet and Mask R-CNN and image-processing approaches, our methodology addresses the need for standardized evaluation processes across diverse laboratory equipment while enabling the integration of mobile devices into the workflow, democratizing AST, and enhancing its accessibility. We utilize a comprehensive disk diffusion dataset for object detection models captured by devices like mobile phones and professional solutions. Additionally, our experiments lay the groundwork for a web application adopting a device-agnostic approach, promising improved accessibility and efficiency in AST analysis.en
dc.formattextcs
dc.format.extent20-23cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 30st Conference STUDENT EEICT 2024: General papers. s. 20-23. ISBN 978-80-214-6231-1cs
dc.identifier.isbn978-80-214-6231-1
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/249223
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 30st Conference STUDENT EEICT 2024: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectantibiotic sensitivity testingen
dc.subjectdisk diffusion testen
dc.subjectmachine learningen
dc.subjectimage processingen
dc.titleAutomating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysisen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
20-eeict-2024.pdf
Size:
3.69 MB
Format:
Adobe Portable Document Format
Description: