Deepfake Speech Detection: A Spectrogram Analysis
Loading...
Date
Authors
Firc, Anton
Malinka, Kamil
Hanáček, Petr
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Association for Computing Machinery
Altmetrics
Abstract
The current voice biometric systems have no natural mechanics to defend against deepfake spoofing attacks. Thus, supporting these systems with a deepfake detection solution is necessary. One of the latest approaches to deepfake speech detection is representing speech as a spectrogram and using it as an input for a deep neural network. This work thus analyzes the feasibility of different spectrograms for deepfake speech detection. We compare types of them regarding their performance, hardware requirements, and speed. We show the majority of the spectrograms are feasible for deepfake detection. However, there is no general, correct answer to selecting the best spectrogram. As we demonstrate, different spectrograms are suitable for different needs.
The current voice biometric systems have no natural mechanics to defend against deepfake spoofing attacks. Thus, supporting these systems with a deepfake detection solution is necessary. One of the latest approaches to deepfake speech detection is representing speech as a spectrogram and using it as an input for a deep neural network. This work thus analyzes the feasibility of different spectrograms for deepfake speech detection. We compare types of them regarding their performance, hardware requirements, and speed. We show the majority of the spectrograms are feasible for deepfake detection. However, there is no general, correct answer to selecting the best spectrogram. As we demonstrate, different spectrograms are suitable for different needs.
The current voice biometric systems have no natural mechanics to defend against deepfake spoofing attacks. Thus, supporting these systems with a deepfake detection solution is necessary. One of the latest approaches to deepfake speech detection is representing speech as a spectrogram and using it as an input for a deep neural network. This work thus analyzes the feasibility of different spectrograms for deepfake speech detection. We compare types of them regarding their performance, hardware requirements, and speed. We show the majority of the spectrograms are feasible for deepfake detection. However, there is no general, correct answer to selecting the best spectrogram. As we demonstrate, different spectrograms are suitable for different needs.
Description
Keywords
Deepfake , Speech , Image-based , Deepfake Detection , Spectrogram , Deepfake , Speech , Image-based , Deepfake Detection , Spectrogram
Citation
Proceedings of the ACM Symposium on Applied Computing. 2024, p. 1312-1320.
https://dl.acm.org/doi/10.1145/3605098.3635911
https://dl.acm.org/doi/10.1145/3605098.3635911
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-4717-1910 