Differentiated Slip Casting: Producing Variable Thickness Ceramic Tiles with Functionally Graded Plaster Moulds

Loading...
Thumbnail Image

Authors

Baseta, Efilena
Palma, Marco
Heher, Florian
Konegger, Thomas
Kaftan, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

This paper introduces a method that enhances the traditional slip casting technique's potential to fabricate ceramic objects with variable thickness. The variability depends on the different filtration rates offered by plaster moulds of varying densities. Two sets of experiments are presented. They focused on identifying (1) the maximum workable density range of moulds made from plaster of Paris and (2) the range of thickness in the resulting ceramic casts. This was accomplished by creating four square flat moulds with different gypsum/water (G:W) ratios and their corresponding casts. Based on these findings, the second set of experiments focused on assembling graded plaster moulds with variable densities (G:W 1:3 to 2:1), resulting in ceramic tiles exhibiting a thickness gradient of 2 mm. These results suggest the possibility of producing double-curved ceramic objects (e.g., custom ceramic tiles or sanitaryware) with graded thickness, tailored to their desired structural and functional performance.
This paper introduces a method that enhances the traditional slip casting technique's potential to fabricate ceramic objects with variable thickness. The variability depends on the different filtration rates offered by plaster moulds of varying densities. Two sets of experiments are presented. They focused on identifying (1) the maximum workable density range of moulds made from plaster of Paris and (2) the range of thickness in the resulting ceramic casts. This was accomplished by creating four square flat moulds with different gypsum/water (G:W) ratios and their corresponding casts. Based on these findings, the second set of experiments focused on assembling graded plaster moulds with variable densities (G:W 1:3 to 2:1), resulting in ceramic tiles exhibiting a thickness gradient of 2 mm. These results suggest the possibility of producing double-curved ceramic objects (e.g., custom ceramic tiles or sanitaryware) with graded thickness, tailored to their desired structural and functional performance.

Description

Citation

Ceramics-Switzerland. 2025, vol. 8, issue 1, p. 1-13.
https://www.mdpi.com/2571-6131/8/1/6

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO