Irrigation with Treated Wastewater as an Alternative Nutrient Source (for Crop): Numerical Simulation

Loading...
Thumbnail Image

Authors

Hyánková, Eva
Kriška-Dunajský, Michal
Zedník, Ondřej
Chaloupka, Ondřej
Pumprlová Němcová, Miroslava

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

From a global perspective, drought is a well-known manifestation of climate change. The search for alternative sources of water also brings uncertainties and risks, for example, in relation to wastewater irrigation. We asked ourselves whether and how supplemental irrigation with pre-treated wastewater would affect the subsoil or groundwater quality. We constructed semi-operational models that were loaded with wastewater in a controlled manner over three years of observations. Ammonium nitrogen pollution is one of the monitored parameters in wastewater discharge. In specific situations and under strict operating conditions, it can be assumed that ammonia nitrogen may not be a significant problem for groundwater. Already at a depth of 0.5 m below ground level, the average nitrogen levels are below 0.02 mg/L at an irrigation rate of approximately 15.5 mm/day. When monitoring total phosphorus, these values are reduced with more variability—depending on the plant species at the surface, ranging from 0.17 to 0.95 mg/L. The measured values are used to calibrate the numerical model, or to determine the reaction parameters that enter the governing equation to describe the distribution of the solution in the soil environment. The results show an acceptable compliance between the model and real measurements, it will be possible to use them in practice for the design of wastewater irrigation systems.
From a global perspective, drought is a well-known manifestation of climate change. The search for alternative sources of water also brings uncertainties and risks, for example, in relation to wastewater irrigation. We asked ourselves whether and how supplemental irrigation with pre-treated wastewater would affect the subsoil or groundwater quality. We constructed semi-operational models that were loaded with wastewater in a controlled manner over three years of observations. Ammonium nitrogen pollution is one of the monitored parameters in wastewater discharge. In specific situations and under strict operating conditions, it can be assumed that ammonia nitrogen may not be a significant problem for groundwater. Already at a depth of 0.5 m below ground level, the average nitrogen levels are below 0.02 mg/L at an irrigation rate of approximately 15.5 mm/day. When monitoring total phosphorus, these values are reduced with more variability—depending on the plant species at the surface, ranging from 0.17 to 0.95 mg/L. The measured values are used to calibrate the numerical model, or to determine the reaction parameters that enter the governing equation to describe the distribution of the solution in the soil environment. The results show an acceptable compliance between the model and real measurements, it will be possible to use them in practice for the design of wastewater irrigation systems.

Description

Citation

Agriculture-Basel. 2021, vol. 11, issue 10, p. 1-20.
https://www.mdpi.com/2077-0472/11/10/946

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO