An Implementation of Lattice-based Proof-of-Work on Blockchain

Loading...
Thumbnail Image
Date
2022
Authors
Krivulčík, A.
Ricci, S.
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
Cryptocurrencies and blockchain are skyrocketing in recent years. They rely on Proof-of-Work (PoW) mechanisms for generating a new transaction and turn this process into ”work” (i.e., puzzles) where miners are paid for. With the advent of quantum computers, also PoW starts to migrate to post-quantum cryptographic alternatives. To the best of our knowledge, we present the first implementation of a lattice-based PoW based on the Shortest Vector Problem (SVP). By implementing in Python 3 and with the use of the NumPy library, we wrote a software that uses this concept on an artificial blockchain and demonstrates its real-world use. Even if this proposal has drawbacks on GPU optimisation and storage requirements, it shows its potential in use. The experimental results show that by balancing the size and generated range of a given matrix and vector, we can easily manipulate the time required to solve SVP challenge.
Description
Citation
Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 283-286. ISBN 978-80-214-6029-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
DOI
Citace PRO