Bio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatings

dc.contributor.authorBaishya, Kaushikcs
dc.contributor.authorVrchovecká, Katarinacs
dc.contributor.authorAlijani, Mahnazcs
dc.contributor.authorRodriguez Pereira, Jhonatancs
dc.contributor.authorThalluri, Sitaramanjaneya Moulics
dc.contributor.authorPávková Goldbergová, Monikacs
dc.contributor.authorPřibyl, Jancs
dc.contributor.authorMacák, Jancs
dc.coverage.issue1cs
dc.coverage.volume18cs
dc.date.accessioned2024-02-22T11:45:28Z
dc.date.available2024-02-22T11:45:28Z
dc.date.issued2023-12-01cs
dc.description.abstractThe present work studies anodic TiO2 nanotube (TNT) layers and their surface modifications for enhancing the cell behavior of human gingival fibroblast cells (hGFs) with the contribution of bio-AFM (Atomic Force Micro-scopy) method. TNT layers, prepared via electrochemical anodization of Ti, with an average tube diameter of 15, 30, and 100 nm, were used as primary substrates for the study. Flat Ti foils were used as reference substrates. Part of the substrates was coated by ultrathin TiO2 coatings (approximate to 0.3 nm thin) using Atomic Layer Deposition (ALD). The cell growth and adhesion of hGFs on the TNT layers and Ti foils were compared between ALD coated and uncoated ones. The supplemental coatings altered the surface chemistry of the TNT layers, particularly shading the fluorine and carbon impurities within anodic TiO2, while preserving the original structure and morphology. The presented approach of very mild surface modification remarkably effects the material's biocompatibility and possess great prospect as implant materials. For the first time, the TNT/cell interface was investigated using bio-AFM in terms of Young's modulus, stiffness, cell adhesive force and roughness. Improved biocompatibility was studied in terms of increased cell viability, density, cell cytoskeleton orientation and overall stiffness of the hGFs.en
dc.formattextcs
dc.format.extent12cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationApplied Surface Science Advances. 2023, vol. 18, issue 1, 12 p.en
dc.identifier.doi10.1016/j.apsadv.2023.100459cs
dc.identifier.issn2666-5239cs
dc.identifier.orcid0000-0003-1117-9854cs
dc.identifier.orcid0000-0001-7091-3022cs
dc.identifier.other187353cs
dc.identifier.researcheridAAC-9943-2020cs
dc.identifier.scopus57188136600cs
dc.identifier.scopus55655855500cs
dc.identifier.urihttps://hdl.handle.net/11012/245177
dc.language.isoencs
dc.publisherELSEVIERcs
dc.relation.ispartofApplied Surface Science Advancescs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2666523923000934?via%3Dihubcs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2666-5239/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectNanotubeen
dc.subjecthGFsen
dc.subjectTi foilsen
dc.subjectAtomic layer depositionen
dc.subjectBio-AFMen
dc.titleBio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatingsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-187353en
sync.item.dbtypeVAVen
sync.item.insts2024.02.22 12:45:28en
sync.item.modts2024.02.22 12:13:22en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2666523923000934main.pdf
Size:
18.1 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S2666523923000934main.pdf