Graph Convolutional Neural Networks For Sentiment Analysis

Loading...
Thumbnail Image

Date

Authors

Myska, Vojtech

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

Commonly used approaches based on deep learning for sentiment analysis task operating over data in Euclidean space. In contrast with them, this paper presents, a novel approach for sentiment analysis task based on a graph convolutional neural networks (GCNs) operating with data in Non-Euclidean space. Text data processed by the approach have to be converted to a graph structure. Our GCNs models have been trained on 25 000 data samples and evaluated 5 000 samples. The Yelp data set has been used. The experiment is focused on polarity sentiment analysis task. Nevertheless, a relatively small training data set has been used, our best model achieved 86.12% accuracy.

Description

Citation

Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 340-344. ISBN 978-80-214-5867-3
https://conf.feec.vutbr.cz/eeict/EEICT2020

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO