Optimization of wavelet transform in the task of intracardiac ECG segmentation

Loading...
Thumbnail Image

Date

Authors

Ředina, R.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

My work deals with the selection of an appropriate wavelet transform setting for feature extraction from intracardiac ECG recordings. The studied signals were obtained during electrophysiological examinations at the Department of Pediatric Medicine, University Hospital Brno. In this paper, several wavelets are tested for feature extraction which is followed by adaptive thresholding to detect atrial activity from the extracted features. The procedure is evaluated using the F-score. Although the presented procedure does not appear to be overall effective for intracardiac signal segmentation, it certainly does not reject the use of wavelet transforms in combination with advanced machine learning, neural network, or deep learning techniques.

Description

Citation

Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 437-441. ISBN 978-80-214-6029-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO