Coexisting Phases of Individual VO<sub>2</sub> Nanoparticles for Multilevel Nanoscale Memory

dc.contributor.authorKepič, Petercs
dc.contributor.authorHorák, Michalcs
dc.contributor.authorKabát, Jiřícs
dc.contributor.authorHájek, Martincs
dc.contributor.authorKonečná, Andreacs
dc.contributor.authorŠikola, Tomášcs
dc.contributor.authorLigmajer, Filipcs
dc.coverage.issue1cs
dc.coverage.volume19cs
dc.date.accessioned2025-07-31T11:56:02Z
dc.date.available2025-07-31T11:56:02Z
dc.date.issued2025-01-02cs
dc.description.abstractVanadium dioxide (VO2) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO2 has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO2 nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own. Here, employing transmission electron microscopy techniques, we investigate phase transitions of single VO2 NPs in real time. Our analysis reveals the statistical distribution of the transition temperature and steepness and how they differ during forward (heating) and backward (cooling) transitions. We evaluate the stability of coexisting phases in individual NPs and prove the persistent multilevel memory at near room temperatures using only a few VO2 NPs. Our findings unveil the physical mechanisms that govern the hysteresis of VO2 at the nanoscale and establish VO2 NPs as a promising component of optoelectronic and memory devices with enhanced functionalities.en
dc.formattextcs
dc.format.extent1167-1176cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationACS Nano (e-ISSN). 2025, vol. 19, issue 1, p. 1167-1176.en
dc.identifier.doi10.1021/acsnano.4c13188cs
dc.identifier.issn1936-086Xcs
dc.identifier.orcid0000-0002-9098-1900cs
dc.identifier.orcid0000-0001-6503-8294cs
dc.identifier.orcid0009-0002-9918-0402cs
dc.identifier.orcid0000-0002-7423-5481cs
dc.identifier.orcid0000-0003-4217-2276cs
dc.identifier.orcid0000-0003-0346-4110cs
dc.identifier.other197865cs
dc.identifier.researcheridR-2546-2017cs
dc.identifier.researcheridAAI-4838-2020cs
dc.identifier.researcheridJ-3881-2014cs
dc.identifier.scopus57222250201cs
dc.identifier.scopus57200608539cs
dc.identifier.urihttps://hdl.handle.net/11012/255368
dc.language.isoencs
dc.publisherAMER CHEMICAL SOCcs
dc.relation.ispartofACS Nano (e-ISSN)cs
dc.relation.urihttps://pubs.acs.org/doi/10.1021/acsnano.4c13188cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1936-086X/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectvanadium dioxideen
dc.subjectphase-change memoryen
dc.subjectnanophotonicsen
dc.subjecttransmission electron microscopyen
dc.subjectinsulator-metaltransitionen
dc.subjectcoexisting phasesen
dc.subjecthysteresisen
dc.titleCoexisting Phases of Individual VO<sub>2</sub> Nanoparticles for Multilevel Nanoscale Memoryen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/EH/EH22_008/0004572cs
sync.item.dbidVAV-197865en
sync.item.dbtypeVAVen
sync.item.insts2025.07.31 13:56:02en
sync.item.modts2025.07.31 13:32:54en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
kepicetal2025coexistingphasesofindividualvo2nanoparticlesformultilevelnanoscalememory.pdf
Size:
4.71 MB
Format:
Adobe Portable Document Format
Description:
file kepicetal2025coexistingphasesofindividualvo2nanoparticlesformultilevelnanoscalememory.pdf