Age Estimation from Retinal Images: Different Image Preprocessing Approaches

Loading...
Thumbnail Image
Date
2023
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Human age is considered an important biometricparameter that is often difficult to determine. Previous studieshave shown that the non-specific general anatomical and physiologicalcharacteristics seen on fundus images are all likely signs ofageing. This paper focuses on age estimation from retinal imageswith different image preprocessing approaches together withproposed image detail enhancement method. Convolution neuralnetwork framework is based on the ResNet-34 architecturetogether with the Consistent Rank Logits algorithm estimatingage as an ordinal variable. The best model achieved a meanabsolute error of 3.47 years, outperforming existing modelsestimating age from retinal images.
Description
Citation
Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers. s. 37-40. ISBN 978-80-214-6154-3
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO