Axiomatic differential geometry II-2 - differential forms
dc.contributor.author | Nishimura, Hirokazu | |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 2 | cs |
dc.date.accessioned | 2013-11-26T11:06:19Z | |
dc.date.available | 2013-11-26T11:06:19Z | |
dc.date.issued | 2013 | cs |
dc.description.abstract | We refurbish our axiomatics of di erential geometry introduced in [5]. Then the notion of Euclideaness can naturally be formulated. The principal ob- jective of this paper is to present an adaptation of our theory of di erential forms developed in [3] to our present axiomatic framework. | en |
dc.format | text | cs |
dc.format.extent | 43-60 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Mathematics for Applications. 2013, 2, č. 1, s. 43-60. ISSN 1805-3629. | cs |
dc.identifier.doi | 10.13164/ma.2013.05 | en |
dc.identifier.issn | 1805-3629 | |
dc.identifier.uri | http://hdl.handle.net/11012/23996 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.relation.ispartof | Mathematics for Applications | en |
dc.relation.uri | http://ma.fme.vutbr.cz/archiv/2_1/nishimura1_final.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.rights.access | openAccess | en |
dc.title | Axiomatic differential geometry II-2 - differential forms | cs |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Ústav matematiky | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |