Axiomatic differential geometry II-2 - differential forms

dc.contributor.authorNishimura, Hirokazu
dc.coverage.issue1cs
dc.coverage.volume2cs
dc.date.accessioned2013-11-26T11:06:19Z
dc.date.available2013-11-26T11:06:19Z
dc.date.issued2013cs
dc.description.abstractWe refurbish our axiomatics of di erential geometry introduced in [5]. Then the notion of Euclideaness can naturally be formulated. The principal ob- jective of this paper is to present an adaptation of our theory of di erential forms developed in [3] to our present axiomatic framework.en
dc.formattextcs
dc.format.extent43-60cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2013, 2, č. 1, s. 43-60. ISSN 1805-3629.cs
dc.identifier.doi10.13164/ma.2013.05en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/23996
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/2_1/nishimura1_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.titleAxiomatic differential geometry II-2 - differential formscs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
05.pdf
Size:
775.84 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections