Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth

dc.contributor.authorLiu, Kaics
dc.contributor.authorHe, Xiaomingcs
dc.contributor.authorRadulescu, Vicentiucs
dc.coverage.issue11cs
dc.coverage.volume443cs
dc.date.issued2025-10-25cs
dc.description.abstractIn this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrödinger-Poisson system {pu+|u|p2u=|u|p2u+|u|q2u+|u|pu,inR3,=|u|p,inR3, with a prescribed mass given by R3|u|pdx=ap, in the Sobolev critical case, where, 1<p<3,a>0, and >0, >0 are parameters, [Formula presented] is the Sobolev critical exponent, and R is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the Lp-subcritical perturbation |u|q2u, with [Formula presented], and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the Lp-supercritical regime: [Formula presented], we prove two existence results for normalized solutions under different assumptions for the parameters ,, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the p-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space R3, for the first time.en
dc.description.abstractIn this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrödinger-Poisson system {pu+|u|p2u=|u|p2u+|u|q2u+|u|pu,inR3,=|u|p,inR3, with a prescribed mass given by R3|u|pdx=ap, in the Sobolev critical case, where, 1<p<3,a>0, and >0, >0 are parameters, [Formula presented] is the Sobolev critical exponent, and R is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the Lp-subcritical perturbation |u|q2u, with [Formula presented], and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the Lp-supercritical regime: [Formula presented], we prove two existence results for normalized solutions under different assumptions for the parameters ,, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the p-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space R3, for the first time.en
dc.formattextcs
dc.format.extent1-51cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Differential Equations. 2025, vol. 443, issue 11, p. 1-51.en
dc.identifier.doi10.1016/j.jde.2025.113570cs
dc.identifier.issn0022-0396cs
dc.identifier.orcid0000-0003-4615-5537cs
dc.identifier.other198534cs
dc.identifier.researcheridA-1503-2012cs
dc.identifier.scopus35608668800cs
dc.identifier.urihttp://hdl.handle.net/11012/255463
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofJournal of Differential Equationscs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0022039625005972cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0022-0396/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectConcentration-compactness principleen
dc.subjectGenus theoryen
dc.subjectNormalized solutionsen
dc.subjectp-Laplacian Schrödinger-Poisson systemen
dc.subjectSobolev critical exponenten
dc.subjectConcentration-compactness principle
dc.subjectGenus theory
dc.subjectNormalized solutions
dc.subjectp-Laplacian Schrödinger-Poisson system
dc.subjectSobolev critical exponent
dc.titleSolutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growthen
dc.title.alternativeSolutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growthen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-198534en
sync.item.dbtypeVAVen
sync.item.insts2025.10.14 14:10:24en
sync.item.modts2025.10.14 09:39:03en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematikycs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S0022039625005972main.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:
file 1s2.0S0022039625005972main.pdf