Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth
| dc.contributor.author | Liu, Kai | cs |
| dc.contributor.author | He, Xiaoming | cs |
| dc.contributor.author | Radulescu, Vicentiu | cs |
| dc.coverage.issue | 11 | cs |
| dc.coverage.volume | 443 | cs |
| dc.date.issued | 2025-10-25 | cs |
| dc.description.abstract | In this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrödinger-Poisson system {pu+|u|p2u=|u|p2u+|u|q2u+|u|pu,inR3,=|u|p,inR3, with a prescribed mass given by R3|u|pdx=ap, in the Sobolev critical case, where, 1<p<3,a>0, and >0, >0 are parameters, [Formula presented] is the Sobolev critical exponent, and R is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the Lp-subcritical perturbation |u|q2u, with [Formula presented], and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the Lp-supercritical regime: [Formula presented], we prove two existence results for normalized solutions under different assumptions for the parameters ,, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the p-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space R3, for the first time. | en |
| dc.description.abstract | In this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrödinger-Poisson system {pu+|u|p2u=|u|p2u+|u|q2u+|u|pu,inR3,=|u|p,inR3, with a prescribed mass given by R3|u|pdx=ap, in the Sobolev critical case, where, 1<p<3,a>0, and >0, >0 are parameters, [Formula presented] is the Sobolev critical exponent, and R is an undetermined parameter, acting as a Lagrange multiplier. We investigate this system under the Lp-subcritical perturbation |u|q2u, with [Formula presented], and establish the existence of multiple normalized solutions using the truncation technique, concentration-compactness principle, and genus theory. In the Lp-supercritical regime: [Formula presented], we prove two existence results for normalized solutions under different assumptions for the parameters ,, by employing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This study presents new contributions regarding the existence and multiplicity of normalized solutions of the p-Laplacian critical Schrödinger-Poisson problem, perturbed with a subcritical term in the whole space R3, for the first time. | en |
| dc.format | text | cs |
| dc.format.extent | 1-51 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Journal of Differential Equations. 2025, vol. 443, issue 11, p. 1-51. | en |
| dc.identifier.doi | 10.1016/j.jde.2025.113570 | cs |
| dc.identifier.issn | 0022-0396 | cs |
| dc.identifier.orcid | 0000-0003-4615-5537 | cs |
| dc.identifier.other | 198534 | cs |
| dc.identifier.researcherid | A-1503-2012 | cs |
| dc.identifier.scopus | 35608668800 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/255463 | |
| dc.language.iso | en | cs |
| dc.publisher | Elsevier | cs |
| dc.relation.ispartof | Journal of Differential Equations | cs |
| dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0022039625005972 | cs |
| dc.rights | Creative Commons Attribution 4.0 International | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/0022-0396/ | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | Concentration-compactness principle | en |
| dc.subject | Genus theory | en |
| dc.subject | Normalized solutions | en |
| dc.subject | p-Laplacian Schrödinger-Poisson system | en |
| dc.subject | Sobolev critical exponent | en |
| dc.subject | Concentration-compactness principle | |
| dc.subject | Genus theory | |
| dc.subject | Normalized solutions | |
| dc.subject | p-Laplacian Schrödinger-Poisson system | |
| dc.subject | Sobolev critical exponent | |
| dc.title | Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth | en |
| dc.title.alternative | Solutions with prescribed mass for the p-Laplacian Schrödinger-Poisson system with critical growth | en |
| dc.type.driver | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
| sync.item.dbid | VAV-198534 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:10:24 | en |
| sync.item.modts | 2025.10.14 09:39:03 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav matematiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1s2.0S0022039625005972main.pdf
- Size:
- 1.33 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 1s2.0S0022039625005972main.pdf
