Chaotised polymeric hollow fibre bundle as a crossflow heat exchanger in air-water applicationChaotised polymeric hollow fibre bundle as a crossflow heat exchanger in air-water application

Loading...
Thumbnail Image

Authors

Kroulíková, Tereza
Astrouski, Ilja
Raudenský, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Czech Technical University in Prague
Altmetrics

Abstract

Fifteen years ago, polymeric hollow fibre heat exchangers were presented for the first time. Nowadays there are not only the shell-and-tube types as there were at the beginning. In this paper, six chaotised polymeric hollow fibre bundles with a different number of fibres were studied. The bundles presented varied in their fibre diameter, number and shape. These bundles were fixed into the module in such a way that the middle part serves as a cross-flow heat exchanger in an air tunnel. They were tested for air-water application with three different airflow rates. The overall heat transfer coefficients were determined, and the inner and outer heat transfer coefficients were derived. The modules presented achieved a heat transfer rate of up to 1309 W. The overall heat transfer coefficient reached a maximum of 339 Wm(-2) K-1.
Fifteen years ago, polymeric hollow fibre heat exchangers were presented for the first time. Nowadays there are not only the shell-and-tube types as there were at the beginning. In this paper, six chaotised polymeric hollow fibre bundles with a different number of fibres were studied. The bundles presented varied in their fibre diameter, number and shape. These bundles were fixed into the module in such a way that the middle part serves as a cross-flow heat exchanger in an air tunnel. They were tested for air-water application with three different airflow rates. The overall heat transfer coefficients were determined, and the inner and outer heat transfer coefficients were derived. The modules presented achieved a heat transfer rate of up to 1309 W. The overall heat transfer coefficient reached a maximum of 339 Wm(-2) K-1.

Description

Citation

Acta Polytechnica. 2020, vol. 60, issue 4, p. 318-323.
https://ojs.cvut.cz/ojs/index.php/ap/article/view/6119/5797

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO