Self-Organizing Migrating Algorithm Pareto

dc.contributor.authorDiep, Quoc Bao
dc.contributor.authorZelinka, Ivan
dc.contributor.authorDas, Swagatam
dc.coverage.issue1cs
dc.coverage.volume25cs
dc.date.accessioned2020-05-05T07:21:10Z
dc.date.available2020-05-05T07:21:10Z
dc.date.issued2019-06-24cs
dc.description.abstractIn this paper, we propose a new method named Pareto-based self-organizing migrating algorithm (SOMA Pareto), in which the algorithm is divided into the Organization, Migration, and Update processes. The important key in the Organization process is the application of the Pareto Principle to select the Migrant and the Leader, increasing the performance of the algorithm. The adaptive PRT, Step, and PRTVector parameters are applied to enhance the ability to search for promising subspaces and then to focus on exploiting that subspaces. Based on the testing results on the well-known benchmark suites such as CEC'13, CEC'15, and CEC'17, the superior performance of the proposed algorithm compared to the SOMA family and the state-of-the-art algorithms such as variant DE and PSO are confirmed. These results demonstrate that SOMA Pareto is an effective, promising algorithm.en
dc.formattextcs
dc.format.extent111-120cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2018 vol. 25, č. 1, s. 111-120. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2019.1.111en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/186989
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/87cs
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en
dc.subjectself-organizing migrating algorithmen
dc.subjectSOMAen
dc.subjectsingle objective optimizationen
dc.subjectswarm intelligenceen
dc.titleSelf-Organizing Migrating Algorithm Paretoen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019-1-111.pdf
Size:
1019.65 KB
Format:
Adobe Portable Document Format
Description:
Collections