Anomaly Detection in Networks Using Noise Spectrum Analysis of Network Devices

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorVarga, Oliver
dc.contributor.authorMusil, Petr
dc.date.accessioned2025-07-30T10:00:55Z
dc.date.available2025-07-30T10:00:55Z
dc.date.issued2025cs
dc.description.abstractThis document presents a novel anomaly detection system based on analyzing power line communication (PLC) noise to differentiate between various network conditions. By leveraging a decision tree classifier, the system classifies measured data into four different states: idle, normal traffic (25 Mbit/s), higher-bandwidth traffic (460 Mbit/s), and DoS attack scenarios. Experimental results demonstrate that this approach is effective in distinguishing DoS attack conditions from normal operations, although some limitations still remain. A key limitation is that a DoS attack aimed at the measuring system may cause it to freeze, preventing real-time analysis by the proposed system.en
dc.formattextcs
dc.format.extent150-152cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 150-152. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255266
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectDoS/DDoSen
dc.subjectelectrical signalen
dc.subjectmachine learningen
dc.subjectnetwork anomaly detectionen
dc.subjectnoiseen
dc.subjectPLCen
dc.titleAnomaly Detection in Networks Using Noise Spectrum Analysis of Network Devicesen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
150-Varga.pdf
Size:
603.35 KB
Format:
Adobe Portable Document Format