Revealing the strengthening contribution of stacking faults, dislocations and grain boundaries in severely deformed LPBF AlSi10Mg alloy

Loading...
Thumbnail Image

Authors

Snopiński, Przemysław
Kotoul, Michal
Petruška, Jindřich
Rusz, Stanislav
Żaba, Krzysztof
Hilšer, Ondřej

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Altmetrics

Abstract

In this study, microstructural features direct metal laser melted (DMLM) aluminium–siliconmagnesium (AlSi10Mg) are investigated using advanced transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The focus is on post-processing by ECAP (Equal Channel Angular Pressing) and its effects on grain refinement, stacking fault formation and dislocation accumulation. In addition, the strength enhancing role of stacking faults is for the first time quantified. The results show that ECAP can increase the yield strength from 294 to 396 MPa, while the elongation increases from 2.4% to 6%. These results show that ECAP processing offers a new approach for producing AlSi10Mg products with improved strength and ductility.
In this study, microstructural features direct metal laser melted (DMLM) aluminium–siliconmagnesium (AlSi10Mg) are investigated using advanced transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The focus is on post-processing by ECAP (Equal Channel Angular Pressing) and its effects on grain refinement, stacking fault formation and dislocation accumulation. In addition, the strength enhancing role of stacking faults is for the first time quantified. The results show that ECAP can increase the yield strength from 294 to 396 MPa, while the elongation increases from 2.4% to 6%. These results show that ECAP processing offers a new approach for producing AlSi10Mg products with improved strength and ductility.

Description

Citation

Scientific Reports. 2023, vol. 13, issue 1, p. 1-16.
https://www.nature.com/articles/s41598-023-43448-5

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO