Advanced Machining of Joint Implant UHMWPE Inserts

Loading...
Thumbnail Image

Authors

Píška, Miroslav
Urbancová, Kateřina

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

The modern orthopaedic implants for applications in hips, knees, shoulders, and spines are composed of hard metal alloys or ceramics and a tribological sub-component that is made of soft materials, with good frictional properties—e.g., UHMWPE (Ultra High Molecule Weight Polyethylene). The UHMWPE implants need to be machined into their final shape after the polymerization and consolidation into a blank profile or near net shaped implant. Thus, machining is a crucial technology that can generate an accurate and precise shape of the implant that should comply with the joints’ function. However, the machining technology can affect the topography and integrity of the surface, transmitted stresses, and resistance to wear. Technology, cutting tools, and cutting conditions can have an impact on the physical and mechanical properties of the entire implant and its longevity. This paper shows an effective and competitive technology for acquiring high-quality insert shape, dimensions, and surface, needed especially for customized implants.
The modern orthopaedic implants for applications in hips, knees, shoulders, and spines are composed of hard metal alloys or ceramics and a tribological sub-component that is made of soft materials, with good frictional properties—e.g., UHMWPE (Ultra High Molecule Weight Polyethylene). The UHMWPE implants need to be machined into their final shape after the polymerization and consolidation into a blank profile or near net shaped implant. Thus, machining is a crucial technology that can generate an accurate and precise shape of the implant that should comply with the joints’ function. However, the machining technology can affect the topography and integrity of the surface, transmitted stresses, and resistance to wear. Technology, cutting tools, and cutting conditions can have an impact on the physical and mechanical properties of the entire implant and its longevity. This paper shows an effective and competitive technology for acquiring high-quality insert shape, dimensions, and surface, needed especially for customized implants.

Description

Citation

Machines. 2022, vol. 10, issue 11, p. 1-19.
https://doi.org/10.3390/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO