Simulation of a maneuvering aircraft using a panel method

Loading...
Thumbnail Image

Authors

Schoř, Pavel
Kouřil, Martin
Daněk, Vladimír

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Czech Technical University in Prague
Altmetrics

Abstract

We present a method for numerical simulations of a maneuvering aircraft, which uses a first-order unsteady panel method as the only source of aerodynamic forces and moments. By using the proposed method, it is possible to simulate a motion of an aircraft, while the only required inputs are geometry and inertia characteristics, which significantly reduces the time required to start the simulation. We validated the method by a comparison of recordings of flight parameters (position, velocities, accelerations) from an actual acrobatic flight of a glider and the results obtained from the simulations. The simulation was controlled by deflections of control surfaces recorded during the actual flight. We found a reasonable agreement between the experimental data and the simulation. The design of our method allows to evaluate not only the integral kinematic quantities but also instant local pressure and inertia loads. This makes our method useful also for a load evaluation of an aircraft. A significant advantage of the proposed method is that only an ordinary workstation computer is required to perform the simulation.
We present a method for numerical simulations of a maneuvering aircraft, which uses a first-order unsteady panel method as the only source of aerodynamic forces and moments. By using the proposed method, it is possible to simulate a motion of an aircraft, while the only required inputs are geometry and inertia characteristics, which significantly reduces the time required to start the simulation. We validated the method by a comparison of recordings of flight parameters (position, velocities, accelerations) from an actual acrobatic flight of a glider and the results obtained from the simulations. The simulation was controlled by deflections of control surfaces recorded during the actual flight. We found a reasonable agreement between the experimental data and the simulation. The design of our method allows to evaluate not only the integral kinematic quantities but also instant local pressure and inertia loads. This makes our method useful also for a load evaluation of an aircraft. A significant advantage of the proposed method is that only an ordinary workstation computer is required to perform the simulation.

Description

Citation

Acta Polytechnica. 2021, vol. 61, issue 2, p. 378-390.
https://ojs.cvut.cz/ojs/index.php/ap/article/view/6627

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO