Preference Based And Ideal Multi-Objective Optimization Applied On Hightorque Ferrite Assisted Synchronous Reluctance Machine

but.event.date27.04.2021cs
but.event.titleSTUDENT EEICT 2021cs
dc.contributor.authorKnebl, Ladislav
dc.date.accessioned2023-01-06T10:05:41Z
dc.date.available2023-01-06T10:05:41Z
dc.date.issued2021cs
dc.description.abstractThis paper introduces comparison of optimization algorithms applied on high-torqueferrite-assisted synchronous reluctance machine. The comparison is focused not solely on two algorithmswithin the same multi-objective optimization approach - preference based or ideal, but also oncomparison of these two approaches. The genetic algorithm and self-organizing migrating algorithmin both approaches are used to find optimal solution. The optimization goal is an optimal parametercombination to achieve the highest torque and power factor, while developing the lowest torque ripple.The optimized design will be evaluated by the 2D finite element analysis in steady-state analysis.en
dc.formattextcs
dc.format.extent235-239cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 27st Conference STUDENT EEICT 2021: Selected Papers. s. 235-239. ISBN 978-80-214-5943-4cs
dc.identifier.doi10.13164/eeict.2021.235
dc.identifier.isbn978-80-214-5943-4
dc.identifier.urihttp://hdl.handle.net/11012/200848
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 27st Conference STUDENT EEICT 2021: Selected papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectsteady-stateen
dc.subjectsynchronous reluctance motoren
dc.subjectfinite element analysisen
dc.subjectoptimizationen
dc.titlePreference Based And Ideal Multi-Objective Optimization Applied On Hightorque Ferrite Assisted Synchronous Reluctance Machineen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
235_EEICT_2021_2.pdf
Size:
799.43 KB
Format:
Adobe Portable Document Format
Description: