Comparison of full-size and patches-based learning approaches for aneurysm segmentation in TOF-MRI data
but.event.date | 26.04.2022 | cs |
but.event.title | STUDENT EEICT 2022 | cs |
dc.contributor.author | Vývoda, J. | |
dc.contributor.author | Jakubíček, R. | |
dc.date.accessioned | 2023-04-25T10:17:08Z | |
dc.date.available | 2023-04-25T10:17:08Z | |
dc.date.issued | 2022 | cs |
dc.description.abstract | The paper is interested in segmentation of intracranial aneurysms. Intracranial aneurysms are life-threatening issue. In this paper there are proposed two methods for this segmentation problem. First one is segmentation with use of full size images, the other one uses patches of the image, which could help decrease the ration between pixels representing background and pixels representing aneurysms. Data from ADAM challenge 2020 are used to train and evaluate these approaches. Using full images show better results in dice coefficient, which is 0.16 greater, then patched image approach. | en |
dc.format | text | cs |
dc.format.extent | 247-250 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 247-250. ISBN 978-80-214-6029-4 | cs |
dc.identifier.isbn | 978-80-214-6029-4 | |
dc.identifier.uri | http://hdl.handle.net/11012/209338 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | Intracranial aneurysm | en |
dc.subject | aneurysm | en |
dc.subject | machine learning | en |
dc.subject | detection | en |
dc.subject | magnetic resonance | en |
dc.subject | U-net | en |
dc.subject | segmentation | en |
dc.title | Comparison of full-size and patches-based learning approaches for aneurysm segmentation in TOF-MRI data | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- eeict-general-247-250.pdf
- Size:
- 640.67 KB
- Format:
- Adobe Portable Document Format
- Description: