Application of Neural Networks in Cardiovascular Load Analysis

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorJaroš, Oliver
dc.contributor.authorJanoušek, Oto
dc.date.accessioned2025-07-30T10:00:54Z
dc.date.available2025-07-30T10:00:54Z
dc.date.issued2025cs
dc.description.abstractThis study investigates deep learning models for estimating aerobic (AeT) and anaerobic (AnT) thresholds using heart rate variability (HRV) analysis. Two CNN-LSTM architectures were developed: one predicting AeT and AnT values directly and another using signal delineation for enhanced threshold identification. The models were trained on HRV data from 119 subjects performing treadmill or cycle ergometer tests, with DFA alpha 1 used for threshold estimation. Performance evaluation showed an MAE of 4.67 bpm for AeT and 4.70 bpm for AnT in the first model, while the second model achieved 6.47 bpm for AeT and 3.15 bpm for AnT. Both models outperformed traditional DFA a1-based methods, with the second model demonstrating greater consistency in AnT detection. These results highlight the potential of deep learning for non-invasive endurance training optimization and cardiovascular monitoring.en
dc.formattextcs
dc.format.extent95-98cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 95-98. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255252
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectHeart rate variabilityen
dc.subjectDetrended Fluctuation Analysisen
dc.subjectAerobicen
dc.subjectAnaerobicen
dc.subjectNeural networksen
dc.titleApplication of Neural Networks in Cardiovascular Load Analysisen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
95-Jaros.pdf
Size:
972.05 KB
Format:
Adobe Portable Document Format