On Münchhausen numbers

Loading...
Thumbnail Image

Authors

Kureš, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Bulgarian Academy of Sciences
Altmetrics

Abstract

The remarkable property of the number 3435, namely 3435 = 3^3 + 4^4 + 3^3 + 5^5, was formalized to the notion of Münchhausen numbers. Properties of these numbers are studied and it is showed that although there are only finitely many Münchhausen numbers in a given base b, there are infinitely manyMünchhausen numbers of the length 2 in all bases. A certain reversion in the definition gives the notion of so-called anti-Münchhausen numbers, search for them is computationally more effective
The remarkable property of the number 3435, namely 3435 = 3^3 + 4^4 + 3^3 + 5^5, was formalized to the notion of Münchhausen numbers. Properties of these numbers are studied and it is showed that although there are only finitely many Münchhausen numbers in a given base b, there are infinitely manyMünchhausen numbers of the length 2 in all bases. A certain reversion in the definition gives the notion of so-called anti-Münchhausen numbers, search for them is computationally more effective

Description

Citation

Notes on Number Theory and Discrete Mathematics. 2021, vol. 27, issue 1, p. 14-21.
http://nntdm.net/volume-27-2021/number-1/14-21/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Citace PRO