Excitation of Mercury Atoms in Nitrogen Post-Discharge

Loading...
Thumbnail Image

Authors

Krčma, František
Bocková, Ivana
Mazánková, Věra
Soural, Ivo
Hrdlička, Aleš
Kanický, Viktor

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

The work presents results obtained during spectroscopic observations of nitrogen DC flowing post-discharges at the total gas pressure of 1000 Pa and at the discharge current of 100 mA. Mercury traces were introduced into the system using auxiliary pure nitrogen flow enriched by mercury vapor. A very low mercury concentration of 3.7 ppb was introduced into the system before the active discharge. The strong quenching of nitrogen pink afterglow was observed but no mercury lines were recorded. Moreover, the vibrational distributions of nitrogen excited states were nearly unchanged. Based on these results, the new experimental set up was created. The introduction point of mercury vapor with higher concentration of 600 ppm was movable during the post discharge up to decay time of 40 ms. Besides three nitrogen spectral systems (first and second positive and first negative), NO-beta and NO-gamma bands, the mercury line at 254 nm was recorded at these conditions. Its intensity was dependent on the mercury vapor introduction position as well as on the mercury concentration. No other mercury lines were observed. The creation of mercury 3P1 state that is the upper state of the observed mercury spectral line is possible by the resonance excitation energy transfer form vibrationally excited nitrogen ground state N2 (X, v = 19). The observed results should form a background for the development of a new titration technique used for the highly vibrationally excited nitrogen ground state molecules determination.
The work presents results obtained during spectroscopic observations of nitrogen DC flowing post-discharges at the total gas pressure of 1000 Pa and at the discharge current of 100 mA. Mercury traces were introduced into the system using auxiliary pure nitrogen flow enriched by mercury vapor. A very low mercury concentration of 3.7 ppb was introduced into the system before the active discharge. The strong quenching of nitrogen pink afterglow was observed but no mercury lines were recorded. Moreover, the vibrational distributions of nitrogen excited states were nearly unchanged. Based on these results, the new experimental set up was created. The introduction point of mercury vapor with higher concentration of 600 ppm was movable during the post discharge up to decay time of 40 ms. Besides three nitrogen spectral systems (first and second positive and first negative), NO-beta and NO-gamma bands, the mercury line at 254 nm was recorded at these conditions. Its intensity was dependent on the mercury vapor introduction position as well as on the mercury concentration. No other mercury lines were observed. The creation of mercury 3P1 state that is the upper state of the observed mercury spectral line is possible by the resonance excitation energy transfer form vibrationally excited nitrogen ground state N2 (X, v = 19). The observed results should form a background for the development of a new titration technique used for the highly vibrationally excited nitrogen ground state molecules determination.

Description

Citation

Journal of Physics: Conference Series. 2014, vol. 516, issue 1, p. 012005-012005.
http://iopscience.iop.org/article/10.1088/1742-6596/516/1/012005

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO