Sheffer operations in complemented posets

Loading...
Thumbnail Image
Date
2021
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Altmetrics
Abstract
We show that in every downward directed poset with an antitone involu-tion the so-called Sheffer operation can be introduced satisfying certain identities.However, also conversely, if we have given a Sheffer operation|on a setP, thenPcan be converted into a poset with an antitone involution′, where both′and theorder relation≤are derived by|. Using this, we can characterize orthoposets, i.e.bounded posets with complementation which is an antitone involution by means ofidentities satisfied by this Sheffer operation. Also conversely, if|is a Sheffer oper-ation on a given setPsatisfying these identities, thenPcan be organized into anorthoposet.
Description
Keywords
Citation
Mathematics for Applications. 2021 vol. 10, č. 1, s. 1-7. ISSN 1805-3629
http://ma.fme.vutbr.cz/archiv/10_1/ma_10_1_chajda_kolarik_final.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Collections
Citace PRO