Online recursive least square parameter estimation for PMS machine

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorKečkéš, Adam
dc.date.accessioned2025-07-30T10:00:56Z
dc.date.available2025-07-30T10:00:56Z
dc.date.issued2025cs
dc.description.abstractThis paper presents the simulation results of the Recursive Least Squares (RLS) algorithm for estimating key motor parameters, including stator resistance and inductances. The algorithm is implemented and tested in MATLAB Simulink to evaluate its accuracy and adaptability under varying operating conditions. The results demonstrate the effectiveness of RLS in real-time parameter estimation, highlighting its potential for improving motor control precision and system stability.en
dc.formattextcs
dc.format.extent173-176cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 31st Conference STUDENT EEICT 2025: General papers. s. 173-176. ISBN 978-80-214-6321-9cs
dc.identifier.isbn978-80-214-6321-9
dc.identifier.urihttps://hdl.handle.net/11012/255273
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 31st Conference STUDENT EEICT 2025: General papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_1.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectMotor controlen
dc.subjectparameter estimationen
dc.subjectrecursive least squaresen
dc.subjectstator resistanceen
dc.subjectinductance estimationen
dc.subjectreal-time estimationen
dc.titleOnline recursive least square parameter estimation for PMS machineen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
173-Keckes.pdf
Size:
795.41 KB
Format:
Adobe Portable Document Format