Multiscale experimental evaluation of agarose-based semi-interpenetrating polymer network hydrogels as materials with tunable rheological and transport performance

dc.contributor.authorTrudičová, Monikacs
dc.contributor.authorSmilek, Jiřícs
dc.contributor.authorKalina, Michalcs
dc.contributor.authorSmilková, Marcelacs
dc.contributor.authorAdámková, Kateřinacs
dc.contributor.authorHrubanová, Kamilacs
dc.contributor.authorKrzyžánek, Vladislavcs
dc.contributor.authorSedláček, Petrcs
dc.coverage.issue11cs
dc.coverage.volume12cs
dc.date.issued2020-10-31cs
dc.description.abstractThis study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition–structure– performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network. Rheological analysis has confirmed that the complex modulus of the gels can be adjusted in a wide range by the gelling component (agarose) with negligible effect of the interpenetrating component (PSS or ALG). On the other hand, the content of PSS as low as 0.01 wt.% of the gel resulted in a more than 10-fold decrease of diffusivity of model-charged organic solute (Rhodamine 6G).en
dc.formattextcs
dc.format.extent1-25cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPolymers. 2020, vol. 12, issue 11, p. 1-25.en
dc.identifier.doi10.3390/polym12112561cs
dc.identifier.issn2073-4360cs
dc.identifier.orcid0000-0001-7268-5641cs
dc.identifier.orcid0000-0002-6553-1764cs
dc.identifier.orcid0000-0002-4224-0841cs
dc.identifier.orcid0000-0002-6211-9643cs
dc.identifier.other166087cs
dc.identifier.scopus57207823371cs
dc.identifier.scopus55844628200cs
dc.identifier.scopus7006307069cs
dc.identifier.scopus25621752900cs
dc.identifier.urihttp://hdl.handle.net/11012/195667
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofPolymerscs
dc.relation.urihttps://www.mdpi.com/2073-4360/12/11/2561cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-4360/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjecthydrogelsen
dc.subjectsemi-interpenetrating polymer networksen
dc.subjectcontrolled release systemsen
dc.subjectrheologyen
dc.subjectdiffusionen
dc.subjectcryo-scanning electron microscopyen
dc.titleMultiscale experimental evaluation of agarose-based semi-interpenetrating polymer network hydrogels as materials with tunable rheological and transport performanceen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-166087en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:38:50en
sync.item.modts2025.01.17 16:47:23en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav fyzikální a spotřební chemiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers1202561v2.pdf
Size:
6.51 MB
Format:
Adobe Portable Document Format
Description:
polymers1202561v2.pdf