Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples
dc.contributor.author | Bouchal, Petr | cs |
dc.contributor.author | Štrbková, Lenka | cs |
dc.contributor.author | Dostál, Zbyněk | cs |
dc.contributor.author | Chmelík, Radim | cs |
dc.contributor.author | Bouchal, Zdeněk | cs |
dc.coverage.issue | 1 | cs |
dc.coverage.volume | 9 | cs |
dc.date.accessioned | 2020-08-04T11:04:16Z | |
dc.date.available | 2020-08-04T11:04:16Z | |
dc.date.issued | 2019-03-05 | cs |
dc.description.abstract | We present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens. | en |
dc.format | text | cs |
dc.format.extent | 1-11 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Scientific Reports. 2019, vol. 9, issue 1, p. 1-11. | en |
dc.identifier.doi | 10.1038/s41598-019-40441-9 | cs |
dc.identifier.issn | 2045-2322 | cs |
dc.identifier.other | 156119 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/179552 | |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartof | Scientific Reports | cs |
dc.relation.uri | http://link.springer.com/article/10.1038/s41598-019-40441-9 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2045-2322/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Holographic microscopy | en |
dc.subject | Geometric phase | en |
dc.subject | Quantitative phase imaging | en |
dc.title | Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-156119 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2020.08.04 13:04:16 | en |
sync.item.modts | 2020.08.04 12:31:06 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s41598019404419.pdf
- Size:
- 3.78 MB
- Format:
- Adobe Portable Document Format
- Description:
- s41598019404419.pdf