Geometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samples

dc.contributor.authorBouchal, Petrcs
dc.contributor.authorŠtrbková, Lenkacs
dc.contributor.authorDostál, Zbyněkcs
dc.contributor.authorChmelík, Radimcs
dc.contributor.authorBouchal, Zdeněkcs
dc.coverage.issue1cs
dc.coverage.volume9cs
dc.date.accessioned2020-08-04T11:04:16Z
dc.date.available2020-08-04T11:04:16Z
dc.date.issued2019-03-05cs
dc.description.abstractWe present geometric-phase microscopy allowing a multipurpose quantitative phase imaging in which the ground-truth phase is restored by quantifying the phase retardance. The method uses broadband spatially incoherent light that is polarization sensitively controlled through the geometric (Pancharatnam-Berry) phase. The assessed retardance possibly originates either in dynamic or geometric phase and measurements are customized for quantitative mapping of isotropic and birefringent samples or multi-functional geometric-phase elements. The phase restoration is based on the self-interference of polarization distinguished waves carrying sample information and providing pure reference phase, while passing through an inherently stable common-path setup. The experimental configuration allows an instantaneous (single-shot) phase restoration with guaranteed subnanometer precision and excellent ground-truth accuracy (well below 5nm). The optical performance is demonstrated in advanced yet routinely feasible noninvasive biophotonic imaging executed in the automated manner and predestined for supervised machine learning. The experiments demonstrate measurement of cell dry mass density, cell classification based on the morphological parameters and visualization of dynamic dry mass changes. The multipurpose use of the method was demonstrated by restoring variations in the dynamic phase originating from the electrically induced birefringence of liquid crystals and by mapping the geometric phase of a space-variant polarization directed lens.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationScientific Reports. 2019, vol. 9, issue 1, p. 1-11.en
dc.identifier.doi10.1038/s41598-019-40441-9cs
dc.identifier.issn2045-2322cs
dc.identifier.other156119cs
dc.identifier.urihttp://hdl.handle.net/11012/179552
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofScientific Reportscs
dc.relation.urihttp://link.springer.com/article/10.1038/s41598-019-40441-9cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2045-2322/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectHolographic microscopyen
dc.subjectGeometric phaseen
dc.subjectQuantitative phase imagingen
dc.titleGeometric-Phase Microscopy for Quantitative Phase Imaging of Isotropic, Birefringent and Space-Variant Polarization Samplesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-156119en
sync.item.dbtypeVAVen
sync.item.insts2020.08.04 13:04:16en
sync.item.modts2020.08.04 12:31:06en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonikacs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598019404419.pdf
Size:
3.78 MB
Format:
Adobe Portable Document Format
Description:
s41598019404419.pdf