Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type

but.event.date26.04.2022cs
but.event.titleSTUDENT EEICT 2022cs
dc.contributor.authorDiblík, J.
dc.contributor.authorKorobko, E.
dc.date.accessioned2023-04-25T10:17:09Z
dc.date.available2023-04-25T10:17:09Z
dc.date.issued2022cs
dc.description.abstractThe paper discusses a discrete equation of an Emden-Fowler type Δ2v(k) = -k3 (Δv(k))3 where v is a dependent variable, k is an integer-valued independent variable, Δv and Δ2v are the first and second-order forward differences of v, respectively. The paper aims to prove the existence of a nontrivial and vanishing solution for k ! 1. The equation is transformed into a system of two first-order difference equations, which makes it possible to apply previously known results when investigating the system.en
dc.formattextcs
dc.format.extent363-367cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 363-367. ISBN 978-80-214-6029-4cs
dc.identifier.isbn978-80-214-6029-4
dc.identifier.urihttp://hdl.handle.net/11012/209366
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 28st Conference STUDENT EEICT 2022: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectdifference equationen
dc.subjectEmden-Fowler type equationen
dc.subjectasymptotic behaviouren
dc.titleVanishing solutions of a second-order discrete non-linear equation of Emden-Fowler typeen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eeict-general-363-367.pdf
Size:
579.29 KB
Format:
Adobe Portable Document Format
Description: