SIFT and SURF based feature extraction for the anomaly detection

Loading...
Thumbnail Image

Date

Authors

Bilik, S.
Horak, K.

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

In this paper, we suggest a way to use SIFT and SURF algorithms to extract the image features for anomaly detection. We use those feature vectors to train various classifiers on a real-world dataset in the semi-supervised (with a small number of faulty samples) manner with a large number of classifiers and in the one-class (with no faulty samples) manner using the SVDD and SVM classifier. We prove, that the SIFT and SURF algorithms could be used as feature extractors, that they could be used to train a semi-supervised and one-class classifier with an accuracy around 89% and that the performance of the one-class classifier could be comparable to the semi-supervised one. We also made our dataset and source code publicly available.

Description

Citation

Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 459-464. ISBN 978-80-214-6029-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO