Droplet dynamics and size characterization of high-velocity airblast atomization

dc.contributor.authorUrbán, Andráscs
dc.contributor.authorZaremba, Matoušcs
dc.contributor.authorMalý, Milancs
dc.contributor.authorJózsa, Viktorcs
dc.contributor.authorJedelský, Jancs
dc.coverage.issue1cs
dc.coverage.volume95cs
dc.date.issued2017-02-07cs
dc.description.abstractAirblast atomizers are especially useful and commonplace in liquid fuel combustion applications. However, the spray formation processes, the droplet dynamics and the final drop size distributions are still not sufficiently understood due to the coupled gas-liquid interactions and turbulence generation. Therefore, empirical and semi-empirical approaches are typically used to estimate the global spray parameters. To develop a physical understanding of the spray evolution, a plain-jet airblast atomizer was investigated in an atmospheric spray rig using the Phase-Doppler technique. The simultaneous drop size and axial and radial velocity components were measured on radial traverses across the spray at various axial distances from the nozzle for a range of atomizing pressures. The droplet turbulent and mean kinetic energies were found to be proportional to the atomizing pressure. Hence, the scatter of the radial motion of the droplets increased with the atomizing pressure. A droplet stability analysis was performed to locate the regions characterized by ongoing secondary atomization. The volume-to-surface diameter, D32, of the fully developed spray was compared with estimates provided by five published formulae. The role of liquid viscosity, hence the Ohnesorge number, was found to be negligible in the investigated regime. Three commonly used size distribution functions were fitted to the measured data to analyze their dependence on the atomizing pressure. The Gamma distribution function was found to give the best approximation to the atomization process.en
dc.formattextcs
dc.format.extent1-11cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationINTERNATIONAL JOURNAL OF MULTIPHASE FLOW. 2017, vol. 95, issue 1, p. 1-11.en
dc.identifier.doi10.1016/j.ijmultiphaseflow.2017.02.001cs
dc.identifier.issn0301-9322cs
dc.identifier.orcid0000-0002-1193-519Xcs
dc.identifier.orcid0000-0002-1268-8434cs
dc.identifier.other133072cs
dc.identifier.researcheridAAY-7288-2021cs
dc.identifier.researcheridA-9224-2013cs
dc.identifier.scopus57189715785cs
dc.identifier.scopus23090535800cs
dc.identifier.urihttp://hdl.handle.net/11012/138389
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofINTERNATIONAL JOURNAL OF MULTIPHASE FLOWcs
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0301932216303093cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/0301-9322/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectPlain-jet airblast atomizeren
dc.subjectDroplet size distributionen
dc.subjectLiquid breakupen
dc.subjectPhase-Doppler Anemometryen
dc.subjectSauter mean diameteren
dc.subjectSpray stabilityen
dc.titleDroplet dynamics and size characterization of high-velocity airblast atomizationen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionacceptedVersionen
sync.item.dbidVAV-133072en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:46:40en
sync.item.modts2025.01.17 16:43:05en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Energetický ústavcs
thesis.grantorVysoké učení technické v Brně. . Budapest University of Technology and Economicscs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dropletdynamicsvut.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:
dropletdynamicsvut.pdf