Support vector machines in reliability calculations of engineering structures

Loading...
Thumbnail Image

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

CRC Press
Altmetrics

Abstract

In the paper, a metamodeling approach based on support vector regression is studied as a promising tool in the assessment of reliability level. The method consists of two steps: firstly, an approximation of the original limit state function is performed, and in the second step a failure probability or reliability index is calculated with a simpler, approximated function using traditional simulation techniques. Two problems with explicit limit state functions are used to study the effectivity of the method. In order to be as effective as possible with respect to computational effort, a stratified Latin Hypercube Sampling simulation method is utilized to properly select training set elements. The accuracy of the method is analyzed and compared with other surrogate modeling methods, namely the polynomial- and artificial neural network-based response surface method, achieving comparable results.
In the paper, a metamodeling approach based on support vector regression is studied as a promising tool in the assessment of reliability level. The method consists of two steps: firstly, an approximation of the original limit state function is performed, and in the second step a failure probability or reliability index is calculated with a simpler, approximated function using traditional simulation techniques. Two problems with explicit limit state functions are used to study the effectivity of the method. In order to be as effective as possible with respect to computational effort, a stratified Latin Hypercube Sampling simulation method is utilized to properly select training set elements. The accuracy of the method is analyzed and compared with other surrogate modeling methods, namely the polynomial- and artificial neural network-based response surface method, achieving comparable results.

Description

Citation

Document type

Peer-reviewed

Document version

Accepted version

Date of access to the full text

2026-08-07

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NoDerivatives 4.0 International
Citace PRO