An Ensemble-Based Malware Detection Model Using Minimum Feature Set

dc.contributor.authorZelinka, Ivan
dc.contributor.authorAmer, Eslam
dc.coverage.issue2cs
dc.coverage.volume25cs
dc.date.accessioned2020-05-05T07:21:10Z
dc.date.available2020-05-05T07:21:10Z
dc.date.issued2019-12-20cs
dc.description.abstractCurrent commercial antivirus detection engines still rely on signature-based methods. However, with the huge increase in the number of new malware, current detection methods become not suitable. In this paper, we introduce a malware detection model based on ensemble learning. The model is trained using the minimum number of signification features that are extracted from the file header. Evaluations show that the ensemble models slightly outperform individual classification models. Experimental evaluations show that our model can predict unseen malware with an accuracy rate of 0.998 and with a false positive rate of 0.002. The paper also includes a comparison between the performance of the proposed model and with different machine learning techniques. We are emphasizing the use of machine learning based approaches to replace conventional signature-based methods.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMendel. 2019 vol. 25, č. 2, s. 1-10. ISSN 1803-3814cs
dc.identifier.doi10.13164/mendel.2019.2.001en
dc.identifier.issn2571-3701
dc.identifier.issn1803-3814
dc.identifier.urihttp://hdl.handle.net/11012/186998
dc.language.isoencs
dc.publisherInstitute of Automation and Computer Science, Brno University of Technologycs
dc.relation.ispartofMendelcs
dc.relation.urihttps://mendel-journal.org/index.php/mendel/article/view/102cs
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0en
dc.subjectmalware detectionen
dc.subjectmachine learningen
dc.subjectensemble learningen
dc.titleAn Ensemble-Based Malware Detection Model Using Minimum Feature Seten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019-2-001.pdf
Size:
892.13 KB
Format:
Adobe Portable Document Format
Description:
Collections