Microcrack interaction with circular inclusion and interfacial zone

Loading...
Thumbnail Image

Authors

Profant, Tomáš
Hrstka, Miroslav
Klusák, Jan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Gruppo Italiano Frattura
Altmetrics

Abstract

A geometrically simplified plane elasticity problem of a finitesmall crack emanating from a thin interfacial zone surrounding the circularinclusion situated in the finite bounded domain is investigated. The crack isarbitrarily oriented and modelled using the distribution dislocation technique.This model represents the inner solution of the studied problem. Thecorresponding fundamental solution is based on the application ofMuskhelishvili complex potentials in the form of the Laurent series. Thecoefficients of the series are evaluated from the compatibility conditionsalong the interfaces of the inclusion, the interfacial zone and the enclosingmatrix. The fundamental solution is also used in the solution of the boundaryintegral method approximating the stress and strain relations of the so-calledouter solution. The asymptotic analysis at the point of the crack initiationcombines the inner and the outer solution and results in the evaluation of thestress intensity factors of the crack tip, which lies in the matrix. Thetopological derivative is subsequently used to approximate the energy releaserate field associated with the perturbing crack in the matrix. The extremevalues of the energy release rate allow one to assess the crack path directionof the initiated microcrack.
A geometrically simplified plane elasticity problem of a finitesmall crack emanating from a thin interfacial zone surrounding the circularinclusion situated in the finite bounded domain is investigated. The crack isarbitrarily oriented and modelled using the distribution dislocation technique.This model represents the inner solution of the studied problem. Thecorresponding fundamental solution is based on the application ofMuskhelishvili complex potentials in the form of the Laurent series. Thecoefficients of the series are evaluated from the compatibility conditionsalong the interfaces of the inclusion, the interfacial zone and the enclosingmatrix. The fundamental solution is also used in the solution of the boundaryintegral method approximating the stress and strain relations of the so-calledouter solution. The asymptotic analysis at the point of the crack initiationcombines the inner and the outer solution and results in the evaluation of thestress intensity factors of the crack tip, which lies in the matrix. Thetopological derivative is subsequently used to approximate the energy releaserate field associated with the perturbing crack in the matrix. The extremevalues of the energy release rate allow one to assess the crack path directionof the initiated microcrack.

Description

Citation

Frattura ed Integrita Strutturale-Fracture and Structural Integrity. 2019, vol. 13, issue 48, p. 503-512.
https://www.fracturae.com/index.php/fis/article/view/2297/2443

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO