Bifurcations in a chaotic dynamical system
but.committee | prof. RNDr. Josef Šlapal, CSc. (předseda) prof. RNDr. Miloslav Druckmüller, CSc. (místopředseda) doc. Ing. Luděk Nechvátal, Ph.D. (člen) doc. RNDr. Jiří Tomáš, Dr. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) Assoc. Prof. Massimiliano Giuli (člen) | cs |
but.defence | additional question: Šlapal - what would be the defence against the bad report | cs |
but.jazyk | angličtina (English) | |
but.program | Aplikované vědy v inženýrství | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Nechvátal, Luděk | en |
dc.contributor.author | Kateregga, George William | en |
dc.contributor.referee | Tomášek, Petr | en |
dc.date.created | 2019 | cs |
dc.description.abstract | Dynamical systems possess an interesting and complex behaviour that have attracted a number of researchers across different fields, such as Biology, Economics and most importantly in Engineering. The complex and unpredictability of nonlinear customary behaviour or the chaotic behaviour, makes it strange to analyse them. This thesis presents the analysis of the system of nonlinear differential equations of the so--called Lu--Chen--Cheng system. The system has similar dynamical behaviour with the famous Lorenz system. The nature of equilibrium points and stability of the system is presented in the thesis. Examples of chaotic dynamical systems are presented in the theory. The thesis shows the dynamical structure of the Lu--Chen--Cheng system depending on the particular values of the system parameters and routes to chaos. This is done by both the qualitative and numerical techniques. The bifurcation diagrams of the Lu--Chen--Cheng system that indicate limit cycles and chaos as one parameter is varied are shown with the help of the largest Lyapunov exponent, which also confirms chaos in the system. It is found out that most of the system's equilibria are unstable especially for positive values of the parameters $a, b$. It is observed that the system is highly sensitive to initial conditions. This study is very important because, it supports the previous findings on chaotic behaviours of different dynamical systems. | en |
dc.description.abstract | Dynamical systems possess an interesting and complex behaviour that have attracted a number of researchers across different fields, such as Biology, Economics and most importantly in Engineering. The complex and unpredictability of nonlinear customary behaviour or the chaotic behaviour, makes it strange to analyse them. This thesis presents the analysis of the system of nonlinear differential equations of the so--called Lu--Chen--Cheng system. The system has similar dynamical behaviour with the famous Lorenz system. The nature of equilibrium points and stability of the system is presented in the thesis. Examples of chaotic dynamical systems are presented in the theory. The thesis shows the dynamical structure of the Lu--Chen--Cheng system depending on the particular values of the system parameters and routes to chaos. This is done by both the qualitative and numerical techniques. The bifurcation diagrams of the Lu--Chen--Cheng system that indicate limit cycles and chaos as one parameter is varied are shown with the help of the largest Lyapunov exponent, which also confirms chaos in the system. It is found out that most of the system's equilibria are unstable especially for positive values of the parameters $a, b$. It is observed that the system is highly sensitive to initial conditions. This study is very important because, it supports the previous findings on chaotic behaviours of different dynamical systems. | cs |
dc.description.mark | E | cs |
dc.identifier.citation | KATEREGGA, G. Bifurcations in a chaotic dynamical system [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019. | cs |
dc.identifier.other | 117088 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/175467 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | Dynamical Systems | en |
dc.subject | Bifurcation | en |
dc.subject | Chaos | en |
dc.subject | attractor | en |
dc.subject | Lyapunov exponent | en |
dc.subject | Dynamical Systems | cs |
dc.subject | Bifurcation | cs |
dc.subject | Chaos | cs |
dc.subject | attractor | cs |
dc.subject | Lyapunov exponent | cs |
dc.title | Bifurcations in a chaotic dynamical system | en |
dc.title.alternative | Bifurcations in a chaotic dynamical system | cs |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2019-06-11 | cs |
dcterms.modified | 2019-09-24-11:58:52 | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
sync.item.dbid | 117088 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.27 08:46:25 | en |
sync.item.modts | 2025.01.15 22:35:18 | en |
thesis.discipline | Matematické inženýrství | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 13.84 MB
- Format:
- Adobe Portable Document Format
- Description:
- final-thesis.pdf
Loading...
- Name:
- appendix-1.pdf
- Size:
- 62 KB
- Format:
- Adobe Portable Document Format
- Description:
- appendix-1.pdf
Loading...
- Name:
- review_117088.html
- Size:
- 10.72 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_117088.html