Prediction of Leidenfrost Temperature in Spray Cooling for Continuous Casting and Heat Treatment Processes

Loading...
Thumbnail Image

Authors

Hnízdil, Milan
Komínek, Jan
Lee, Taewoo
Raudenský, Miroslav
Čarnogurská, Mária
Chabičovský, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Spray cooling of hot steel surfaces is an inherent part of continuous casting and heat treatment. When we consider the temperature interval between room temperature and for instance 1000 degrees C, different boiling regimes can be observed. Spray cooling intensity rapidly changes with the surface temperature. Secondary cooling in continuous casting starts when the surface temperature is well above a thousand degrees Celsius and a film boiling regime can be observed. The cooled surface is protected from the direct impact of droplets by the vapour layer. As the surface temperature decreases, the vapour layer is less stable and for certain temperatures the vapour layer collapses, droplets reach the hot surface and heat flux suddenly jumps enormously. It is obvious that the described effect has a great effect on control of cooling. The surface temperature which indicates the sudden change in the cooling intensity is the Leidenfrost temperature. The Leidenfrost temperature in spray cooling can occur anywhere between 150 degrees C and over 1000 degrees C and depends on the character of the spray. This paper presents an experimental study and shows function for prediction of the Leidenfrost temperature based on spray parameters. Water impingement density was found to be the most important parameter. This parameter must be combined with information about droplet size and velocity to produce a good prediction of the Leidenfrost temperature.
Spray cooling of hot steel surfaces is an inherent part of continuous casting and heat treatment. When we consider the temperature interval between room temperature and for instance 1000 degrees C, different boiling regimes can be observed. Spray cooling intensity rapidly changes with the surface temperature. Secondary cooling in continuous casting starts when the surface temperature is well above a thousand degrees Celsius and a film boiling regime can be observed. The cooled surface is protected from the direct impact of droplets by the vapour layer. As the surface temperature decreases, the vapour layer is less stable and for certain temperatures the vapour layer collapses, droplets reach the hot surface and heat flux suddenly jumps enormously. It is obvious that the described effect has a great effect on control of cooling. The surface temperature which indicates the sudden change in the cooling intensity is the Leidenfrost temperature. The Leidenfrost temperature in spray cooling can occur anywhere between 150 degrees C and over 1000 degrees C and depends on the character of the spray. This paper presents an experimental study and shows function for prediction of the Leidenfrost temperature based on spray parameters. Water impingement density was found to be the most important parameter. This parameter must be combined with information about droplet size and velocity to produce a good prediction of the Leidenfrost temperature.

Description

Citation

Metals. 2020, vol. 10, issue 11, p. 1-12.
https://www.mdpi.com/2075-4701/10/11/1551

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO