Successive Grinding and Polishing Effect on the Retained Austenite in the Surface of 42CrMo4 Steel

Loading...
Thumbnail Image

Authors

Pechoušek, Jiří
Kuzmann, Ernö
Olina, Anna
Vondrášek, René
Vrba, Vlastimil
Kouřil, Lukáš
Ingr, Tomáš
Král, Petr
Mašláň, Miroslav

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

ORCID

Altmetrics

Abstract

Low-alloy 42CrMo4 steels were studied by Fe-57 Mossbauer spectroscopy (MS), X-ray diffractometry (XRD), and Energy Dispersive X-ray Spectroscopy (EDS) measurements. The investigations were performed on metallographic samples, which were subjected to a series of successive grinding and polishing with a progressively finer grit. Conversion X-ray Mossbauer spectroscopy (CXMS) was used to determine the occurrence of austenite in steel samples. It is a unique method detecting the austenite content very sensitively. Six samples with different surface preparation were investigated, starting with 4.8% of austenite on an as-cut sample, and a large decrease in the retained austenite to 2.6% was observed after the first grinding of a hardened cut sample. Additionally, an unexpectedly large decrease in the austenite content to 2.3% was found due to the final polishing. A second time applied successive grinding and polishing of all samples resulted in identical austenite content determined by CXMS of approx. 5%, which proved the applicability of the CXMS method. Generally, the result calls attention to the importance of preparation of metallurgical samples by grinding and polishing where the results can vary significantly on the level of surface processing.
Low-alloy 42CrMo4 steels were studied by Fe-57 Mossbauer spectroscopy (MS), X-ray diffractometry (XRD), and Energy Dispersive X-ray Spectroscopy (EDS) measurements. The investigations were performed on metallographic samples, which were subjected to a series of successive grinding and polishing with a progressively finer grit. Conversion X-ray Mossbauer spectroscopy (CXMS) was used to determine the occurrence of austenite in steel samples. It is a unique method detecting the austenite content very sensitively. Six samples with different surface preparation were investigated, starting with 4.8% of austenite on an as-cut sample, and a large decrease in the retained austenite to 2.6% was observed after the first grinding of a hardened cut sample. Additionally, an unexpectedly large decrease in the austenite content to 2.3% was found due to the final polishing. A second time applied successive grinding and polishing of all samples resulted in identical austenite content determined by CXMS of approx. 5%, which proved the applicability of the CXMS method. Generally, the result calls attention to the importance of preparation of metallurgical samples by grinding and polishing where the results can vary significantly on the level of surface processing.

Description

Citation

Metals. 2022, vol. 12, issue 1, p. 1-13.
https://www.mdpi.com/2075-4701/12/1/119

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO