Bloody Forecast: Daily Blood Demand Prediction Using Various Modeling Approaches

but.event.date29.04.2025cs
but.event.titleSTUDENT EEICT 2025cs
dc.contributor.authorDaňková, Martina
dc.contributor.authorKošková, Stanislava
dc.contributor.authorPlešinger, Filip
dc.date.accessioned2025-07-30T10:03:08Z
dc.date.available2025-07-30T10:03:08Z
dc.date.issued2025cs
dc.description.abstractSufficient blood supply is critical not only for scheduled surgeries, but also for emergency medical interventions. In our study, we focus on predicting the daily blood demand separately for two blood types: A+ and O-, based on data from the Transfusion and Tissue Department of University Hospital Brno. The dataset consisted of data on blood demand from 2021 to 2024 and was extended by data regarding non-working days, national and school holidays, seasons, and influenza epidemics. The performance of various prediction models was measured using the normalized Mean Absolute Error (nMAE), which reflects the average prediction error relative to the average daily blood demand. When tested on data from 2023, the best performance was achieved by linear regression models, with a nMAE of 26% for A+ and 50% for O-, indicating lower predictability for blood types with smaller populations. Interestingly, models for different blood types use different features, as the demand for individual blood types depends on different factors. Despite relatively high nMAE values, the models still outperformed a ”qualified guess” approach based only on historical averages.en
dc.formattextcs
dc.format.extent72-75cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papers. s. 72-75. ISBN 978-80-214-6320-2cs
dc.identifier.doi10.13164/eeict.2025.72
dc.identifier.isbn978-80-214-6320-2
dc.identifier.issn2788-1334
dc.identifier.urihttps://hdl.handle.net/11012/255320
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 31st Conference STUDENT EEICT 2025: Selected papersen
dc.relation.urihttps://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2025_sbornik_2.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectBlood demanden
dc.subjectcomputational modelingen
dc.subjectmachine learningen
dc.subjectfeature selectionen
dc.titleBloody Forecast: Daily Blood Demand Prediction Using Various Modeling Approachesen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
72-Dankova.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format