Use of Lignocellulosic Materials for PHA Production

Loading...
Thumbnail Image

Authors

Obruča, Stanislav
Benešová, Pavla
Márová, Ivana

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Croatian Society Of Chemical Engineers
Altmetrics

Abstract

Polyhydroxyalkanoates (PHAs) are very promising materials that might serve as an environmentally friendly alternative to petrochemical plastics. The main obstacle preventing PHAs from entering the market massively is the final cost of the polymer material, a significant portion of which is attributed to carbon substrate. Hence, the researchers have been intensively seeking cheap substrates for sustainable production of PHAs. Lignocellulose represents a very promising substrate for PHAs production – it is abundant, cheap, and it does not compete with human food chain. On the other hand, utilization of lignocellulose materials as substrates for biotechnological processes represents a challenge due to many factors, such as necessary hydrolysis of the biomass to yield fermentable sugars and presence of numerous antimicrobial agents. Therefore, this work summarizes recent advances in biotechnological conversion of lignocellulose materials into PHAs. The review not only deals with the process of fermentation, but it also considers different approaches of lignocellulose hydrolysis and detoxification.
Polyhydroxyalkanoates (PHAs) are very promising materials that might serve as an environmentally friendly alternative to petrochemical plastics. The main obstacle preventing PHAs from entering the market massively is the final cost of the polymer material, a significant portion of which is attributed to carbon substrate. Hence, the researchers have been intensively seeking cheap substrates for sustainable production of PHAs. Lignocellulose represents a very promising substrate for PHAs production – it is abundant, cheap, and it does not compete with human food chain. On the other hand, utilization of lignocellulose materials as substrates for biotechnological processes represents a challenge due to many factors, such as necessary hydrolysis of the biomass to yield fermentable sugars and presence of numerous antimicrobial agents. Therefore, this work summarizes recent advances in biotechnological conversion of lignocellulose materials into PHAs. The review not only deals with the process of fermentation, but it also considers different approaches of lignocellulose hydrolysis and detoxification.

Description

Citation

CHEMICAL AND BIOCHEMICAL ENGINEERING QUARTERLY. 2015, vol. 29, issue 2, p. 135-144.
http://silverstripe.fkit.hr/cabeq/past-issues/article/766

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO