Verified nonlinear model of piezoelectric energy harvester

Loading...
Thumbnail Image

Authors

Rubeš, Ondřej
Brablc, Martin
Hadaš, Zdeněk

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

EDP Sciences
Altmetrics

Abstract

Energy harvesting is an important topic today. Complex monitoring systems with many nodes need energy sources and vibration energy harvesters (VEHs) could be one type of them. Mathematical model of the VEH is necessary instrument to estimate possible harvested power. This paper deals with piezoelectric VEH in setting as cantilever beam with tip mass. Traditional linear model of this type of VEH is simple, however, it represents the VEH only in one operating point and in another one (another amplitude of excitation vibrations) it could return wrong results. The nonlinear model of VEH is introduced in this paper with its parameters estimation. The nonlinear model is compared with linear model and experiment to demonstrate difference between them in amplitude frequency characteristics. Finally, the average harvested power from harmonic vibrations is measured experimentally and compared with prediction from linear and nonlinear model.
Energy harvesting is an important topic today. Complex monitoring systems with many nodes need energy sources and vibration energy harvesters (VEHs) could be one type of them. Mathematical model of the VEH is necessary instrument to estimate possible harvested power. This paper deals with piezoelectric VEH in setting as cantilever beam with tip mass. Traditional linear model of this type of VEH is simple, however, it represents the VEH only in one operating point and in another one (another amplitude of excitation vibrations) it could return wrong results. The nonlinear model of VEH is introduced in this paper with its parameters estimation. The nonlinear model is compared with linear model and experiment to demonstrate difference between them in amplitude frequency characteristics. Finally, the average harvested power from harmonic vibrations is measured experimentally and compared with prediction from linear and nonlinear model.

Description

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO