Deployment of deep learning-based anomaly detection systems: challenges and solutions

Loading...
Thumbnail Image
Date
2024
Authors
Ježek, Štěpán
Burget, Radim
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Altmetrics
Abstract
Visual anomaly detection systems play an important role in various domains, including surveillance, industrial quality control, and medical imaging. However, the deployment of such systems presents significant challenges due to a wide range of possible scene setups with varying number of devices and high computational requirements of deep learning algorithms. This research paper investigates the challenges encountered during the deployment of visual anomaly detection systems for industrial applications and proposes solutions to address them effectively. We present a model use case scenario from real-world manufacturing quality control and propose an efficient distributed system for deployment of the defect detection methods in manufacturing facilities. The proposed solution aims to provide a general framework for deploying visual defect detection algorithms base on deep neural networks and their high computational requirements. Additionally, the paper addresses challenges related the whole process of automated quality control, which can be performed with varying number of camera devices and it mostly requires interaction with other factory services or workers themselves. We believe the presented framework can contribute to more widespread use of deep learning-based defect detection systems, which may provide valuable feedback for further research and development.
Description
Citation
Proceedings II of the 30st Conference STUDENT EEICT 2024: Selected papers. s. 207-211. ISBN 978-80-214-6230-4
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Citace PRO